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Executive Summary 

The goals of this work are: 1: place an embodied agent driven by spiking neurons on two neuromorphic 

platforms, SpiNNaker and HICANN.  2: extend the agent to learn categories of items from its environment that 

will improve its performance and communication with a user; and 3: do this in a neuro-psychologically plausible 

manner.   Placing the agent on the chips will be a relatively straight-forward engineering task.  Extending the 

agents learning abilities is linked to neuro-psychological plausibility. Exploration of learning over large numbers 

of neurons will involve a complex search of a vast problem space of topologies, learning algorithms, and neural 

models.  The system will learn cell assemblies (CAs), the neural basis of categories, that are both effective and 

more closely aligned to psychological behaviour. 

This will be done in two main phases, both involving software development, and handshaking with the 

neuromorphic platforms. The first phase will involve initial translation of an existing neuronal agent to PyNN 

along with resolving any inconsistencies with the hardware.  The Cell Assembly robot version 3 (CABot3) will 

be translated to PyNN, SpiNNaker and HICANN, and runs in a virtual environment.  There will be handshaking 

between the 3D environment and the neuromorphic chips.  This first phase will result in CABot3 on both chips.  

The second phase will then exploit the hardware for exploring learning CAs and plans from the environment.  

CAs will be learned for both categories and instances of objects in the environment.  These will fire persistently 

for times consistent with short-term memory (STM), and will help the agent in performing its tasks.  This 

experimental search will include, but not be limited to, a range of Hebbian learning mechanisms, topologies, and 

neuron types.  Simulations, both hardware and software based, will be used to find parameters so that the system 

can learn to perform correctly.  Analysis of the topology and the evolution of the topology will drive the search.  

In addition to performance in the environment, this will involve exploration of STM dynamics and classification. 

Both categorisation and STM will be evaluated as cognitive models. 

This project, NEAL, is an application on the neuromorphic platform; it can be extended to provide new agents, 

and new models of cognitive domains and brain areas.  So, it will be one software tool from the brain simulation 

platform, a brain simulation engine that can run on neuromorphic chips. It will eventually lead to a contribution 

on the neuro-robotics platform, as extensions will be validated brain models embodied in physical robots.   

Using a point model, NEAL will simulate billions of neurons in real-time on SpiNNaker, and the explorations of 

multi-area learning that persists for days will be an application of the brain simulation platform.  Similarly, this 

project will be applicable to neuro-robotics in the cognitive areas that are being developed, and in the future in 

actual motion.  This will integrate with the cognitive architectures, and the mathematical and theoretical 

foundations of brain research sub projects.  The overall CABot network is designed by partitioning into sub-

networks, and these can be grouped together to allow domains, and thus larger areas, to collaborate.  In 

combination with the CA work, there is a strong link to cognitive architectures.  Understanding the long-term 

dynamics of CA formation, and the short-term dynamics of CA activation and competition will advance the 

theoretical foundations.  When possible, and for inspiration, data from the strategic human and mouse brain data 

sub projects will be used for, for example, topology, neural models and learning rules. We are particularly 

interested in data involving learning concepts and neural and synaptic changes.  Though the project is part of the 

neuromorphic platform and sub project, it is also linked with the brain simulation and neuro-robotics platform, 

and the cognitive architectures, theoretical, and mouse and human brain data sub projects. 

The project will contribute to the HBP by providing an extensible agent that can be used in a 3D environment, 

and by providing advancements for the HBP’s neuromorphic systems to learn CAs.  The agent will be useful for 

researchers to use during and after the ramp-up phase.  It will be a working embodied agent in a simulated 

environment implemented entirely in simulated neurons, providing a modifiable early link in the project between 

robotic systems, cognitive architectures, brain data, and neuromorphic hardware.  It will provide existing neural 

language, vision, planning, and action modules, which have a reasonable degree of modularity.  Improved 

models of CA learning will provide insight into the theoretical problem of concept formation in neural systems.  

This will be linked to the environment, psychology and known and posited neural behaviour, leading to a 

significant impact in both the short and longer term. 
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B0. Cost and funding breakdown  

Organisation 1 - Organisation Name: Middlesex University 

Categories  RTD (€) 

1. Personnel costs 90300 

2. Travel & subsistence 6500 

3. Durable equipment  0 

4. Consumables 0 

5. Subcontracting (detailed justification is needed)  0 

6. Other direct costs 0 

7. Total direct costs (Sum of row 1 to 6) 96800 

8. Indirect costs (according to the organisation's cost 

model) 

58080 

9. Total costs (Sum of row 7 and 8) 154880 

10. Requested EC contribution 116160 

 

  



HBP: Competitive Call for additional beneficiaries – Part B – NEAL –2013/10/14                                      

 

4 

 

 

B1. Proposed Plan  

B1.1. Objectives and approach 

Neuromorphic Computing Systems Objective: Achieved by: 

Implement novel computing paradigms Implementing an embodied agent in spiking neurons. 

Generic circuit concepts of spiking neurons Develop improved cell assembly models. 

 

Operational Objective Area: Achieved by: 

Neuromorphic platform Implementing simplified versions of brain models. 

Theoretical foundations Furthering generic CA models. 

Brain simulation platform Building point models for simulating brain areas. 

Cognitive architecture Building neuro-cognitive models to extract principles. 

NEAL will implement a novel computing paradigm, an embodied agent in spiking neurons on 

neuromorphic platforms. The earliest phase will make use of the neuromorphic platform to implement a 

simplified version of a brain model by translating the existing CABot3 system to PyNN and then onto the 

neuromorphic chips.  This relies on the existing CABot3 code, written in Java, but also on PyNN, and 

eventually on SpiNNaker and HICANN.  CABot3 is implemented entirely in our own Fatiguing Leaky 

Integrate and Fire (FLIF) neural model written in Java.    It uses over 100,000 neurons but simulates the 

entire system in roughly real-time on a PC since the discrete time steps correlate with 10ms of time.  

CABot3 is broken into 46 subnets, enabling some degree of modularity.  We have already implemented the 

model without fatigue in PyNN.  As several of the subnets do not take advantage of fatigue, several 

subsystems (e.g. the planning subnets) can begin to be implemented immediately.  We expect that the 

fatigue model will be relatively easy to implement in standard PyNN neural models.  Moreover, as part of 

CA learning a different fatigue model will be used, so this will need to be implemented.  Learning is a 

similar problem because CABot3 uses both long and short-term synaptic modification (Huyck, 2009).  We 

expect long-term learning to be relatively straight-forward, but short-term plasticity may be more of a 

challenge.  Moreover these challenges may need a different solution for each of the chips. These proposed 

initial experiments will use up to 100,000 neurons but this should not break the “maximum of a few tens of 

thousands of neurons” mentioned in the call, because the time constant is so large.  Similarly, the proposed 

system does not take advantage of STDP; learning is based entirely on co-firing in a given 10ms cycle.   

The second phase will explore CAs, a generic circuit concept.  This will meet the theoretical foundations 

objective by furthering generic CA models. During the development of CABot3, we showed that a large 

enough spiking neural network is Turing complete (Byrne & Huyck, 2010), and implemented an embodied 

agent solely in spiking neurons.  During the development, it became clear that the difficult question was not 

how to program a neural system to function, but which neural model, network and topology were needed so 

that it could learn to function.  Prior to CABot and since finishing, we have spent some time studying 

learning with these systems.  Our earlier learning work (Huyck & Orengo, 2005; Huyck, 2007; Nadh & 

Huyck, 2012) focused on nets where all neurons were stimulated by the environment.  The extension of our 

FLIF model to allow spontaneous firing from hypo-fatigue has enabled the growth of neural circuits into 

areas that are not directly stimulated from the environment (Huyck & Mitchell, 2013).  This has still, in 

essence, been a sensory task since firing stops when the stimulus stops.  CABot3 needed CAs to persist 

mainly for relatively precise times to support natural language parsing dynamics, but also for planning.  

CAs are a long standing and well supported theory linking psychology and biology (Hebb, 1949; Huyck & 

Passmore, 2013). In CABot3, CAs were mostly programmed by setting synaptic weights.  Some progress 

has been made by using small world topologies so that the CAs persistently fire longer when they are 
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activated more strongly, and for longer if reactivated.  NEAL will combine these two strands so that CAs, 

that persist for psychologically realistic times, can be learned.    

Some of the evaluations of NEAL will meet the cognitive architecture objective by building neuro-

cognitive models to extract generic principles.  CABot3 already has a cognitive model of parsing and one 

of rule learning.  The new simulations will learn novel categories of visual items from the environment.  

There will be a range of 3D shapes with a range of visual textures.  These will initially be linked to labels, 

but later learned in an entirely unsupervised fashion.  Categories will have a special behaviour in the 

environment. We have a neuro-cognitive model of a rule learning system that makes use of reinforcement 

learning from environmental feedback (Belavkin & Huyck, 2010), and this mechanism will be used to 

determine the categories.  A classic experiment (Shepard, Hovland, & Jenkins, 1961) will be used as a 

cognitive test. CABot3 plans using a Maes net (Maes, 1989) that has been programmed (in FLIF neurons), 

but NEAL will learn new plans.  Initially this will be by integrating our reinforcement mechanism with the 

Maes net, and by direct user instruction.  The existing net is built of orthogonal CAs (sharing no neurons), 

and the reinforcement mechanism will modify the strength of associations between CAs.  The user 

instructions will create new CAs.  This limited approach will be replaced by an overlapping model where 

basic units will be learned associating goals, actions, and facts from the environment.  This will include 

extra subnets to generate and evaluate plans supporting the generation of more complex plans. NEAL will 

also take advantage of the larger number of neurons.  We are looking for long term systems lasting days, 

learning throughout. This is a developmental neuro-psychology problem.  A comparison of the two systems 

using STDP combined with a compensatory mechanism for the CA formation problem is particularly 

promising. The variability of analogue neurons and synapses may lead to particularly powerful attractors, 

and CAs are attractors. 

The system meets an objective of the brain simulation platform; it is a brain model based on a point model 

level of description.  CA learning really is open ended research.  We will develop a working system that 

generalises, explore the space of working systems, and work in promising areas.   Exploiting the variability 

of neurons and synapses both analogue and discrete, we will explore ranges of options.  There are a huge 

number of options so we will be guided by the neuroscience as much as possible, but meet the milestones.  

This relies only on the earlier systems.  We will interact with the HBP community to learn what is neuro-

psychologically plausible, and what can be implemented.  

B1.2. Progress beyond the state of the art 

Learning CAs, and learning plans are advances on the state of the art. However, translating the FLIF 

model, and translating CABot3 are not really beyond the state of the art. Instead these two tasks will focus 

on aligning the current state of the art CABot3 system with the HBP.  The simple FLIF model that we have 

developed will be readily comparable with other neural models both in software and hardware simulations.  

CABot3 will be connected via PyNN to neuromorphic chips that will support a system with a much larger 

number of neurons and synapses.   

Learning CAs is novel not because, like earlier work, these CAs will be linked to the environment, but they 

are novel because of the psychological nature of these CAs and their effectiveness.  These CAs will persist 

for times similar to short-term psychological memory.  An initial metric here is the ACT-R times 

(Anderson & Lebiere, 1998), but we will use further evidence. These CAs will be derived from the 

environment, and help the agent improve its performance in that environment  This will be a step toward a 

learning system capable of learning domain specific and general concepts that have rich semantics. 

Learning plans is also novel not because systems cannot learn plans, but because existing neural systems 

that learn plans are limited.  This will provide novel mechanisms for learning plans in a neural system, and 

a novel means of learning CAs, as they are a core component of our Maes net plans. 

For example, the domain for the second agent could be a mushroom game, where the agent moves about 

the 3D virtual environment collecting mushrooms.  It will need food and sleep, will get injured, and be able 
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to attack and collaborate with other agents in the environment.  The mushrooms will come in varying 

shapes, colours and textures, and the agent will classify them, and discover their properties.  It will also 

learn better plans for getting the appropriate mushrooms, and for interacting with other agents. 

Finally, the agents provide one possible framework for building integrated neuro-cognitive agents.  The NL 

parsing component of CABot3 was a neuro-cognitive model of parsing (Huyck, 2009). It made use of the 

tripartite theory (Jackendoff, 2002), a linguistic theory based on the lexical, syntactic and semantic 

domains.  The theory says that there are core processes, and processes for communicating between 

domains.  These also apply to other domains (e.g. morphology), but it seems reasonable to extend the 

theory to areas outside of language processing.  Our development methodology breaks the overall net into 

subnets.  In some cases, though currently only a few and not much more than metaphorically, these subnets 

can be linked directly to brain areas. Additionally, subnets provide a plug-and-play mechanism.   One 

researcher can develop one subsystem (e.g. vision), and as long as it communicates with spikes, it can be 

replaced by another version relatively easily.   

B1.3. Methodology and associated work plan 

The overall strategy is to build working systems.  Initially we will build agents functioning in an 

environment, task 1.1 (T1.1) and T1.2.  Later we will expand these agents (T1.3 and T1.4) so that they can 

learn more about their environment, and thus be more useful in that environment.  While doing this, 

working agents will perform tasks as cognitive models; similarly; this will have some correlation with 

biological data, though anything that is particularly solid may be beyond the scope of this project.   

We have discussed SpiNNaker with Furber for several years now, and have planned on putting our model 

onto it from our first conversation.  Consequently, ideas of working on SpiNNaker are more fully formed 

than those for working on HICANN, and the plan reflects this bias.  

The NEAL project consists of one work package.  That is broken into 4 Tasks (see table 1.2a below). 

Task 1.1: Transfer FLIF model to PyNN and neuromorphic chips 

We have already translated the Leaky Integrate and Fire component of our neural model to PyNN, and 

will immediately begin translating some of the CABot3 components (e.g. early vision and planning) to 

PyNN.  Later, we will need to add the fatigue component to the model.  A standard PyNN model should 

be sufficient. There are two variants of fatigue, and only the first, milestone 1.1 (M1.1), needs to be 

implemented for CABot3.  The second will be translated after month 9. 

Learning will be included in the system.  PyNN has good support for LTP, and it will be included in the 

first few months.  A critical component of the CABot3 model is binding via STP (M1.2).  This should 

work in PyNN, and all basic neural and synaptic components will run on both chips (M1.3). 

Finally, CABot3 is precisely timed and it is not clear how readily this will translate to either chip.  We are 

hopeful that the 10ms integration constant will solve the problems, but may need to increase the number 

of neurons for CABot3.  Even if CABot3 does not require more neurons, there is scope for exploration of 

the dynamics and robustness of neural processing circuits with more neurons.  That is, by using more 

neurons, the systems will be more effective, and cope with more hardware failures. 

Task 1.2: Transfer CABot3 

CABot3 runs in a virtual 3D environment.  CABot3 has a mobile avatar in the environment.  Input from the 

environment comes in the form of a pixel image from the avatar’s camera and text commands issued from 

a user.  We will begin by translating the vision, control, and planning subnets of CABot3 into PyNN.  

These are not dependent on real-time behaviour, nor do they particularly need the fatigue model.  Via 

Python, we will integrate the environment with the agent providing both input to and symbolic motion 

output from the PyNN based CABot3 (M2.1).   
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As the fatigue, LTP and STP primitives are implemented (T1.1), these will be integrated into the PyNN 

agent, then to the SpiNNaker agent (M2.2), and then the HICANN agent.  All three agents will be tested 

and compared.  Tests will include the ability to parse commands, view the environment, build a simple 

spatial cognitive map of the environment, and to learn which rule is a correct rule.  These will be compared 

with the existing Java based system and each other.  We expect that all will behave almost identically, 

though extra neurons could be used by the neuromorphic agents. 

Task 1.3: Learn CAs 

We will use the PyNN model to learn simple categories, then use the modified fatigue model to include 

spontaneous activation from the new fatigue model.  This will bring us to the current state of the Java 

model on PyNN and the chips.  We will then add new subnets replacing the higher level vision subnets, and 

the system will learn the visual categories by exploring.  Instances of categories will be co-presented with 

labels so the system can learn words.  Labelling provides a ready test, and links to the language system.   

We will then develop a system that learns CAs that persist for the time psychological short-term memories 

persist (M3.1).  If there is more evidence for a CA, it will persist longer.  If a CA is reactivated, by for 

instance being presented again, it will persist longer the second time.  Our current idea is that our existing 

sensory like learning mechanism can be integrated with subnets that support persistence and top-down 

effects.  This will be compared to the ACT-R memory model. 

A new environment will then be used; using video game technology it is quite easy to develop new 3D 

environments.  This will be a more sophisticated task, searching for particular types of objects to fulfil 

current goals or needs.  Environmental feedback will enable the system to learn things that will help its 

performance.  We will test this on categories with varying degree of feature overlap (Shepard, Hovland, & 

Jenkins, 1961) to allow a cognitive test (M3.2).  We will also test that its game performance improves.   

Task 1.4: Learn Plans  

We will change associations within Maes net elements to improve an existing plan driven by reinforcement 

learning.   This will involve a modification of associations between existing CAs, which implement the 

Maes net.  Similarly, new elements within the net will be created and linked in response to user commands, 

and the associations between these will be modified to improve the overall plan.  Together these are M4.1.   

 

After this, we will learn overlapping CAs for plans.  The earlier plan, including the learned plans will use 

CAs that do not share neurons.  The new plan will take advantage of shared neurons to learn more 

sophisticated, and neuro-psychologically plausible plans.   This will be driven by separate plan generation 

subnets, and we will consider turning learning on and off by neuromodulators. This is a speculative 

venture, so it does not have a milestone.  The system will be tested on the new 3D environment, which is 

not a cognitive test (M3.3 and M4.2).   

Milestone Descriptions (see table 1.2b below) 

Milestones are directly linked to tasks, and proceed sequentially through the task. T1.1 has three 

milestones.  M1.1 is to put the CABot3 FLIF model onto PyNN by month 2.  M1.2 is to include 

the STP model in PyNN by month 6.  M1.3 is to have both FLIF models, and long and short-term 

synaptic modification on PyNN and both chips.  M1.1 and M1.2 are necessary to move the project 

forward; M1.3 is more difficult but is also largely non-blocking. 

There are only two milestones for the CABot3 task T1.2.  M2.1 puts a simple version of the agent 

into PyNN by month 3; this will support movement onto SpiNNaker and HICANN.  M2.2 has the 

complete agent on SpiNNaker via PyNN; it takes advantage of the first task.   CABot3 will then 

be implemented on HICANN. 
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The largest task is T1.3, learning CAs.  This is much more exploratory than T1.1 and T1.2, but at 

least these three milestones will be met.  M3.1 is properly persistent learned categories.  M3.2 is a 

cognitive model of a classification task, and M3.3 improves the overall agent’s performance.  We 

are confident in a reasonable advancement with M3.3, but hope for a significant one. 

Task T4 is learning plans, and thus is learning process. M4.1 is relatively straight-forward porting 

our existing reinforcement learning to the Maes net, and responding to user commands to add new 

elements to that net.  M4.2 is a catch all for the project, allowing the project to wrap up with one 

agent, or a variant for each chip; this could include the more sophisticated planning system.   

 

Table 1.2a: WP and Tasks description 

 

Work package number:  

 
WP 1 Start month: M 1 End month: M 24 

Work package title: Embodied Agent Development and Evaluation 

Activity type: RTD 

Participant Number: 
1 Middlesex 

University 

    

Participant Short Name: MU     

 

Objectives: 

1: Provide an embodied cognitive agent in spiking neurons on SpiNNaker and HICANN that 

can be readily modified and extended. 

2: Extend the agent to learn environmentally useful and neuro-psychologically realistic cell 

assemblies. 

 

Description of Work and role of the partners: 

Task 1.1: Transfer FLIF model to PyNN and neuromorphic chips (months 1-12) 

All will be executed by Middlesex (MU). This will take 4 person months, and use Huyck and the RA. 

Translate both variants of the fatiguing FLIF model to PyNN and SpiNNaker and HICANN.  Integrate 

LTP, and STP models with PyNN and the chips. 

Task 1.2: Transfer CABot3 (months 1-9)  

MU: This will take 4 person months, and use the RA, Mitchell, and Huyck. 

Take existing CABot3 Java code and move portions based on LIF model to PyNN.  Integrate the 3D 

environment with PyNN and the chips. Translate the full CABot3 system to PyNN and chips. As soon 

as the chips become available, the PyNN agent will be integrated with SpiNNaker, and then HICANN. 

Task 1.3: Learn CAs (months 6-24)  

MU: The most time will be spent on this task taking 7 person months, by Huyck and the RA. 

Explore the short and long term dynamics of CA persistence and creation.  Use compensatory Hebbian 
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learning with subnets of differing topologies.  Explore varying neural models and STDP. A new 3D 

environment and task will support the development of a more sophisticated agent that can learn a wider 

range of semantics. 

Task 1.4: Learn Plans (months 13-24)  

MU: This will take 4 person months by Mitchell, the RA, and Huyck. 

Modify existing plans in response to environmental feedback.  Create new plans and plan elements 

from user instruction.   Expand plan capability by learning overlapping CAs for plan elements. 

 

Detailed allocation of effort (person months)  

Proposer Number Proposer Name Person Months 

1 MU 19 

 

Table 1.2b:  Milestones description  

 

Milestones 

number 

Milestones 

name 

Lead proposer short 

name and number 

Delivery month Comments 

1.1 FLIF in PyNN MU 1 2  

1.2 STP in PyNN MU 1 6  

1.3 Model on 

Chips 

MU 1 12 Both Chips 

2.1 Simple Agent 

on PyNN 

MU 1 3  

2.2 CABot3 on 

SpiNNaker 

MU 1 9 HICANN date 

flexible 

3.1 Learned CAs 

persist like 

STM 

MU 1 15 Based on ACT-R 

model 

3.2 Classification 

Cognitive 

Model 

MU 1 18 Based on Shepard 

et al. 

3.3 Learned CAs 

help the agent 

MU 1 21 Game based 

evaluation 

4.1 Weight plans 

and cache 

commands 

MU 1 18  

4.2 Agent complete MU 1 24 Possibly 1 version 

for each chip 

 



HBP: Competitive Call for additional beneficiaries – Part B – NEAL –2013/10/14                                      

 

10 

 

 

B2. Implementation  

B2.1. Participants 

Organisation 1 

Name of the Organisation / Department  Middlesex University Higher Education Corporation 
(Department of Computer Science) 

Location  London, UK 

Description of the Organisation / 

Department (300 words limit) 

Middlesex University is a thriving British University 

based in London with a large international network. The 

University teaches 40,000 students. The project team is 

based in the Department of Computer Science within the 

School of Science and Technology. 

Middlesex University, the School, and the Department 

have extensive experience of European funding including 

Framework Programmes, and non-European funding. 

Supported by the Research and Knowledge Transfer 

Office; MU has extensive expertise as a coordinator of FP 

projects. The Department is currently coordinating two 

FP7 projects, ‘CRitical Incident management training 

System using an Interactive Simulation environment 

(CRISIS)’ (contract no.: 242474) and ‘Warehousing 

images in the digital hospital: interpretation, 

infrastructure, and integration (WIDTH)’ (contract no.: 

269124).  It has recently been given a funded FP7 

collaborative project VALCRI - Visual Analytics for 

Sense-making in Criminal Intelligence Analysis - worth 

€13 million to the consortium. The Department was a 

partner in ‘Emerging Technoethics of Human Interaction 

with Communication, Bionic, and robotic Systems 

(ETHICBOTS)’(contract no.: 017759), 

In addition to these projects, the Department and School 

have participated in a range of grants and research that is 

particularly relevant to the NEAL project.  There is a large 

Artificial Intelligence research group, and a large robotics 

group.  The AI group has several members active in 

neuronal systems including: Professor Andreas Albrecht is 

working in attractor dynamics, Dr Belavkin in neuro-

cognitive systems, Dr  Kahn in compartmental neural 

models, Dr Passmore in cell assemblies and virtual 

environments, and Dr Yang in spiking models for central 

pattern generators.  The robotics group includes several 

researchers interested in neuro-robotics including Dr 

Yang, and Professor Martin Smith. 

The school also includes many PhD whose research could 

be used in this project.  Similarly, MSc and BSc thesis 

students could work on thesis projects directly linked to 

the NEAL project.  
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Previous experience relevant to the 

tasks the participant will undertake in 

the project. 

The MU project team has extensive experience 

developing large software packages.  In particular, the 

development of CABot3 demonstrates our ability to 

deliver large spiking neural network systems.  Huyck has 

also worked on GATE, the General Architecture for Text 

Engineering.  While at Microsoft, Huyck developed 

Visual Basic.  He was invited to speak at the Telluride 

Neuromorphic Engineering Workshop in 2011.  While 

there, there was some exploration of SpiNNaker’s 4 chip 

model.   

Huyck has managed several grants including the UK 

EPSRC CABot3 grant ‘Natural Language Parsing with 

Cell Assemblies: computational linguistics with attractor 

nets’ and ‘Modelling Cell Assemblies as a Neuro-

Psychological Phenomenon and for Practical 

Applications’. 

 

Title Professor of Artificial Intelligence 

First Name  Christian 

Last Name Huyck 

Profile (300 words limit) Huyck thinks we are a long way from a full-fledged Turing test 

passing AI, but that the best way to get there is to follow the 

human model, both psychologically and neurally.  Huyck has been 

pursuing that path for 20 years now (Huyck, 2001), and has made 

some strides.    He thinks it rather unlikely that he will complete 

this goal by himself, or even leading a small group. The HBP, 

however, fits into this plan perfectly.  

Huyck completed his PhD at the University of Michigan in 1994 

with a thesis on human like natural language parsing.  Having 

participated in the Message Understanding Competitions, Huyck 

continues research in Computational Linguistics.  While 

attempting to resolve the Prepositional Phrase Attachment 

Ambiguity problem, he realised semantics was needed; he knew 

about CAs and that people use them to for their own semantics to 

resolve attachments.  Naively, he thought he would just put in 

existing CA algorithms, and the problem would be solved.  Fifteen 

years later, this problem was solved with CAs (Nadh & Huyck, 

2012).  The CA based solution is currently the best algorithm for 

resolving this ambiguity. 

Initially, Huyck was surprised that these algorithms did not 

already exist.  Seeing that CAs needed to be understood, Huyck 

set about developing a neural model and learning algorithms.  

Obvious problems with full-fledged neural systems, such as the 

binding problem, have been addressed.  While developing CABot 

agents, he realised that CA systems were Turing complete, and 

proved it.   
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Huyck has been at Middlesex University since 1998, first as a 

Senior Lecturer, then Principal Lecturer, then Reader, and is 

currently Professor of Artificial Intelligence.  He formed the AI 

research group on arriving, and the group has continued to grow 

throughout his tenure.  He continues to pursue his goal of 

developing a real AI by following the human model. 

 

Title Dr  

First Name  Ian 

Last Name Mitchell 

Profile (300 words limit) Mitchell has interests in Biologically Inspired Algorithms, 

artificial neural networks (ANNs), and combinations of the two. 

Mitchell completed his PhD at University of North London in 

1999 on sequence recognition using a novel ANN (Bavan & 

Mitchell, 2000), known as Graph-Set And Associative Memory, 

GSAAM.   

GSAAM based the structure of the network on the sequences in 

the training set data. The weights were decided by a modified 

back-propagation algorithm. After training, recall would involve 

presenting an unseen partially incomplete sequence to GSAAM, 

which then recalled multiple candidate solutions each with an 

associated probability. 

Mitchell went on to compare ANNs and other techniques used in 

categorisation (Cairns, Huyck, Mitchell, & Wu, 2001).  

Categorisation continues to be an interest, with recent work 

comparing Kohonen nets with biologically realistic nets on this 

task (Huyck & Mitchell, 2013). 

Mitchell then pursued a new direction towards Evolutionary 

Computation with the intention of merging this with ANNs. This 

started looking at new ways to represent problems using Genetic 

Algorithms (Mitchell & Pocknell, 2000; Agrawal, Mitchell, 

Passmore, & Litovski, 2005). Mitchell retained his interests in 

ANNs using them to categorise and predict sequences (Jiang, Wu, 

& Mitchell, 2006) and continues to explore ANNs (Huyck & 

Mitchell, 2013; Tian, Guo, Liu, Mitchell, Cheng, & Zhao, 2013). 

Mitchell has been at Middlesex University since 1998, first as a 

Lecturer, then Senior Lecturer and is currently a Principal 

Lecturer. Mitchell and Huyck formed the AI research group on 

their arrival at Middlesex.  It now contains 12 faculty, and roughly 

the same number of PhD students.  Mitchell has been Director of 

Programmes since 2007 and introduced and developed a number 

of programmes, including Computer Forensics. In August 2013 

Mitchell relinquished his role of Director of Programmes with the 

intention to return to research in AI-related fields. 

B2.2. Resources to be committed 
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Huyck will be funded for 4.8 person months, Mitchell for 2.4 person months, and the RA (Wieclaw) for 12 

person months.  Huyck will manage the project, participate in all 4 tasks, and lead T1.1, T1.2 and T1.3.   

Mitchell will lead T1.4, and the planning portion of T1.2.  The RA will focus on T1.2 then T1.3, but spend 

some time on T1.1 and T1.4.   

This neuromorphic work complements Huyck’s main research stream, so extra time could be devoted to 

the project beyond the budgeted time.  Similarly, Wieclaw’s doctoral work complements the project, so 

additional time could be devoted beyond the budget.  Additionally, other staff at Middlesex (e.g. Dr Zhijun 

Yang, Dr Roman Belavkin, Dr Peter Passmore, and Dr Nawaz Khan) are involved in closely related work, 

so could contribute to the project in an unbudgeted fashion.   

The overall project is relatively flexible with relatively few dependencies.  The tasks are relatively 

separated from each other, though the later parts of T1.2 do depend on parts of task T1.1, as does T1.3.  

The separate subnets and domains enable team members to move the project forward independently.  

Huyck is driving most of the research, and is available to support Mitchell and Wieclaw.  Similarly, 

Wieclaw does have experience with the FLIF model, but could be replaced by another relatively skilled 

developer if necessary.   

The time budgeted for T1.1 and T1.2 should be sufficient in itself.  T1.3 and T1.4 are more open ended.  

Development will proceed within the budgeted time and milestones will be met. Additional (unbudgeted) 

resources could allow the milestones to be met early, and for the results to be more significant.  

Travel expenses of 6500 euros will be used for travel to conferences and other HBP sites.  

B2.3. Feasibility of the work Plan within the available time frame 

Huyck will manage the project, supporting Mitchell and the RA.  It is expected that the half-time RA will 

be Anna Wieclaw, who is also working on classification with CAs.  Huyck will actively communicate with 

the larger HBP, and encourage discussion between the entire NEAL team and the HBP community.   

Initially, the team will work on tasks 1 and 2, resulting in CABot3 on PyNN and both chips. Having 

already translated the basic LIF model to PyNN, the project will be able to start on April 1
st
 2014. Initially, 

Huyck will concentrate on resolving fatigue and learning problems, while Mitchell and the RA will 

concentrate on translating CABot3, and integrating the environment.  Regular meetings will support ad hoc 

meetings to move the project forward.   

If the FLIF model including STP can be readily translated to PyNN and then onto the chips, T1.1 and T1.2 

will go smoothly.  There are two possible problems: the fatigue models and STP.  Discussion with Furber 

indicate that SpiNNaker can implement both, though STP may be computationally expensive.  The desired 

and expected course of action will be to translate the FLIF models to the adaptive exponential integrate and 

fire model on PyNN, and make use of existing PyNN STP processes that directly translate to HICANN 

(and SpiNNaker).  However, this may not be feasible.  It is possible to translate the FLIF model to a PyNN 

backend, but that backend would have to be resolved with HICANN.  These problems may need to be 

resolved explicitly with the chip development teams; as the already implemented Java code is relatively 

simple, there is no theoretical problem, but there may be practical difficulties.  Similarly, large portions of 

the system could be rewritten to work with a LIF neural model.  If the FLIF model cannot be translated, 

resources will be switched from learning (T1.3 and T1.4) to agent development T1.2; if STP cannot be 

implemented, and thus binding cannot be easily implemented, the context free grammar parser will be 

replaced with a regular grammar parser.  None the less, even in this worst case scenario, embodied agents 

will run on both chips. 

Note that we feel the schedule for tasks T1.1 and T1.2 are generous.  We are confident of making the 

milestones and fulfilling these objectives.  Additional time made available will be used to explore the two 

remaining tasks, the options provided by the hardware (e.g. STDP), and the larger HBP. 
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Both Tasks T1.3 and T1.4 are about learning CAs.  While we have made consistent advances in this area 

for quite some time, it is not clear how well things will proceed.  We are confident that the milestones will 

be met, but there are a range of possible successful outcomes from learned CAs categorising shapes to CAs 

involved in plans that can learn plans in the environment that beat a human in a contest and even insightful 

plans.  

Undone consider Rui thinks the advancement beyond state of art could have a figure. 
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B3. Expected Impact 

There are three main ways that this project will increase the impact of the HBP: a working agent will 

support the cohesion of the project; new understanding of CAs will be gained; and more sophisticated and 

valuable AI systems will be developed. NEAL will have an impact by itself, but crucially it provides 

support for these further advancements.   

Firstly, the development of an embodied cognitive agent in spiking neurons, running on neuromorphic 

chips will support the development of more sophisticated agents later in the HBP.  Neural cognitive 

architectures, neural robotics, and the understanding of the brain all require huge numbers of neurons 

working together.  Simple versions of many cognitive domains can be developed, potentially linked to 

brain areas, and NEAL provides several of these domains.  Later in the HBP, other domains can be 

developed, more sophisticated domains can be developed, and different alternatives to domains can be 

developed.  Huyck is particularly keen on building a language system that learns language and is linked to 

semantics. These can then be combined in a CABot-like system, and evaluated to move the HBP forward.  

While NEAL is based on a point neural model, it and its components can be integrated with more 

compartmental models, and other point models because communication is based on spikes.  Neural 

cognitive models can be more closely linked to biological data. For this impact, these areas and agents will 

need to be developed.   

Secondly, the impact of the HBP will be increased by extending the understanding of CAs.  CAs are crucial 

neuro-psychological building blocks, each composed of many neurons.  The scientific community does not 

fully understand how they are formed, how they act, or how they interact.  NEAL will further this 

understanding, and provide the basis for a further growth in understanding.  NEAL will further the 

understanding of short and long term CA dynamics, how they compete, and how the collaborate.   Work 

beyond NEAL could extend this in a variety of ways including, for example, development of cognitive 

maps, integration with and relation to central pattern generators, and relations between semantic and 

episodic CAs. Each extension of understanding will increase the range of possible applications of these 

agents.  The impact will be increased by discussion within the HBP, and links to biological and neuro-

psychological data.   

Thirdly, one impact of the HBP will be better computer systems.  Sophisticated spiking neuron cognitive 

agents will be able to learn domains and avoid the brittleness of current AI systems.  These agents will 

assist people as, for example, video game agents, improved interfaces, and improved data mining. For this 

to happen, cognitive agents will need to be developed during the HBP.  Spiking neuron cognitive agents 

can then be used for the basis of industrially viable applications during and after the project.  These can be 

based on neuromorphic hardware, supercomputers, distributed computation, and even with commonly 

available hardware including PCs, game consoles, or mobile phones.  The FLIF model is computationally 

inexpensive, and understanding derived from the HBP could lead to robust systems that function on low-

end hardware.  At the other extreme, agents could integrate neuromorphic hardware, supercomputers and 

distributed computation to lead to full-fledged Turing test passing AI and maybe beyond.   

This blue sky thinking will not overshadow our development of NEAL.  The project meets the objectives 

of the neuromorphic additional beneficiaries call, and helps to meet several objectives of the larger HBP.  It 

meets both of the implicit objectives of the call by being an implementation of a novel computing 

paradigm, an embodied agent in spiking neurons; and by exploring a generic circuit concept, CAs.  It meets 

the strategic objective of the full flagship 1 (SOFF-1) by being an ICT platform for brain modelling that 

links a point neural model to neuromorphic hardware.  It meets SOFF-2 by both modelling the brain over 

short and long term scales, and by creating brain-inspired technology.  It meets SOFF-5, and to some 

degree SOFF-3, by using biological data to develop the agents, thus linking ICT with neuroscience.  

Finally, the NEAL team are committed to the collaborative nature of HBP and will contribute to SOFF-6 

by collaborating with HBP partners whenever possible. 
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B4. Ethical issues 

Describe any ethical issues that may arise in the action, filling the following form below: 

 

 YES NO PAGE 

Informed Consent    

 Does the proposal involve children?     

 Does the proposal involve patients or persons not able to 

give consent? 

   

 Does the proposal involve adult healthy volunteers?    

 Does the proposal involve Human Genetic Material?    

 Does the proposal involve Human biological samples?    

 Does the proposal involve Human data collection?    

Research on Human embryo/foetus    

 Does the proposal involve Human Embryos?    

 Does the proposal involve Human Foetal Tissue / Cells?    

 Does the proposal involve Human Embryonic Stem 

Cells? 

   

Privacy    

 Does the proposal involve processing of genetic 

information or personal data (e.g. health, sexual lifestyle, 

ethnicity, political opinion, religious or philosophical 

conviction) 

   

 Does the proposal involve tracking the location or 

observation of people? 

   

Research on Animals    

 Does the proposal involve research on animals?    

 Are those animals transgenic small laboratory animals?    

 Are those animals transgenic farm animals?    

 Are those animals cloned farm animals?    

 Are those animals non-human primates?     

Research Involving Developing Countries    

 Use of local resources (genetic, animal, plant etc)    

 Impact on local community    

Dual Use     
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 Research having direct military application     

 Research having the potential for terrorist abuse    

ICT Implants    

 Does the proposal involve clinical trials of ICT implants?     

I CONFIRM THAT NONE OF THE ABOVE ISSUES 

APPLY TO MY PROPOSAL 

Yes   

 


