Natural Language Processing and Requirements Engineering: a Linguistics Perspective

By Dr. Christian R. Huyck &

Feroz Abbas

Introduction

Natural Language Processing (NLP) has recently reached a stage of maturity where it is more and more industrially viable [Church 95]. Areas of research such as Machine Translate (MT), Speech Recognition, and Text Extraction are now in commercial applications. NLP is no longer merely a research task focused on simple examples. It now works with real people talking on the phone to machines, newspaper articles being scanned and manuals being corrected by machine.

Speech Recognition is a profound success. You can give instructions on the telephone to an answering machine by voice. Machine stenographers are available on a PC to translate speech into a letter. These systems function almost as well as humans, they are always available, and much less expensive.

Undone combine these next two paras

Similarly, MT has been rather successful. Some very simple MT systems are used in hand held devices and elsewhere. However, a full-fledged translation of an important document is rarely left up to a machine. Instead, an expert translator passes the initial document through the MT system; the expert then corrects the machine translation. This speeds the translation process by as much as 5 times.

The DARPA sponsored Message Understanding Competitions [MUC-6 1995, MUC-7 1998] have been terminated because they have reached the goal. Text Extraction from Natural Language (NL) documents in a given domain functions at a high degree of precision and recall. Though this is below human functioning, it is quite close, and functions in a fraction of the time.

Can these successes be applied to Requirements Engineering (RE)? Others [Ryan 93] have noted that NLP will not solve all of RE's problems. RE is more than a simple interpretation of NL text.

Requirements Acquisition is a complex process. This process involves a large amount of communication involving NL. NL is both ambiguous and underspecified. Simple NLP tools may be able to aid in communication between the Requirements Engineer and the Domain Expert, and aid in developing and maintaining appropriate RE documents.

Undone add more here

Furthermore, NLP systems interact in sophisticated ways with the Domain Model. This Domain Model is both a key product of the RE process, and a key component in the process. Additionally, this Domain Model is a key component to the NLP system. Everything seems to depend on the Domain Model. Ideally, the Domain Model will be built by the Requirements Engineer with help from the NLP system.

Requirements Acquisition

The Requirements Acquisition task is an iterative process of discovery, refinement, and modelling leading to the creation of an artefact, the specification. This can on occasions be the subject of a contract between the system supplying organisation and the end user (customer)[Pressman 1997]. Typically the task involves at least 2 parties, a systems professional (Requirements Engineer) and a systems user (Domain Expert).

The process of interaction between these two parties is an information intensive activity and will involve the use of both spoken and written language. At its simplest a transcript (possibly verbatim) of an interview is converted into a written document and this document is then subjected to stepwise refinement, again possibly through further dialogue. The specification will eventually be written in a natural language assisted by some formal or semi-formal "artificial language".

Requirements Acquisition can lead to a document or documents that outline the requirements. However, a large amount of the information may not be written down, and is merely inside the Requirement Engineer’s head.

The Requirements Engineer uses both spoken and written language at different stages of the specification process. The academic study of language, linguistics has a long association with computing as exemplified by the contributions of for example Chomsky [Chomsky 1966]. One branch of linguistics is particularly relevant to the RE process, Pragmatics. Yule [Yule 1996] defines Pragmatics as the study of speaker meaning. He goes on to refine this definition by explaining that pragmatics is the study of contextual meaning and that it is also concerned with "how much more is communicated than is said". Closely related is the question of how we successfully take part in the activity of conversation. This is the subject of a related branch of linguistics, Discourse Analysis.

Communication involves one party trying to transmit his internal model to another party. The transmission does not necessarily (and rarely if ever does) contain the complete model.

In the case of RE, more than simple one-way communication is needed. The Requirements Engineer often works with the domain expert to develop the planned system. The Requirements Engineer is actually participating in developing the model because the Domain Expert may not have knowledge of implementation details. Communication still takes place, but it is important that many unspoken assumptions are written down so that both speakers have a similar internal model of the problem and the proposed solution.

An NLP system is not going to replace the Requirements Engineer. However, it is possible that NLP systems can act as tools for him. They can translate NL into and from formal languages. NLP systems can help maintain the documents, and aid the expert in communicating with the users. These systems can speed the RE process, and may help to find problems with the specification.

Prune this section might keep a bit and reference Harold
Translation to and from Formal Languages

Many systems exist to aid in the RE process. Systems such as process modelling, object modelling, and event modelling take input as a formal language, and then process the description. It is up to the Requirements Engineer to develop the formal language description of the system being modelled, and where appropriate to translate the results back to a NL description. This process can be aided, or even largely automated, by a NLP system.

When the Requirements Engineer is developing the formal language description, he may start from NL input. Where this is the case, an NLP system may be very effective at translating the NL description directly to the formal language. The authors have some experience with this type of system [Abeysinghe 1999]. Thus the expert is freed from the task of formalising natural language. Of course, in some cases, a NL description of the system may not be available. In this case the expert will still have to generate a formal description. However, a NL description is still probably useful.

An additional task for the expert is to translate from the formal model, to a NL description that is suitable for other experts and for users. This may also be semi-automated by NL production systems. The formal model can be directly converted to NL text. In the case where there is not an initial NL description of the formal system, this translation may provide a very useful document.

If there was an initial NL description, this can be compared to the result of the formal language to NL translation. This may point out extra faults in the description and the model. Again, the process of comparison may be done by the expert, by an NLP system, or by both.

This is not to say that the NLP system(s) will replace the expert in this stage. Instead, it will allow him to concentrate on the relevant details: eliciting more of a description or a better description of the modelled system, noting holes in the description, interpreting the formal model, and describing non-textual aspects of the results of the formal system.

Ambiguity and Underspecification

Many Requirements Engineers will recognise the problem described above in the sense that the continued use of natural language to specify requirements is always accompanied by warnings of the inherent ambiguity of natural language. However, it is possible the problem will have arisen because the act of converting spoken discourse into its written counterpart could result in loss of information content. Another possibility is that this act created incorrect information. A key point here is inference; an inference is any additional information used by the listener (Requirements Engineer) to interpret what is said (by the Domain Expert) to what must be meant. For example, the Domain Expert may state the top requirement to the proposed system is ease of use. The Requirements Engineer may interpret this as really meaning that the would-be users expected to use the system without any training. This could result in a user interface appropriate for novices but frustratingly cumbersome for professionals.

Ambiguity is a problem that is also difficult for NLP systems to handle. Given a string that has multiple interpretations, how do you select the correct interpretation? Humans, while processing NL, often overlook ambiguities. This is because the correct interpretation is obvious to humans. When all readers derive the same interpretation, ambiguity is not a problem; when different readers derive different interpretations, the text can lead to problems, particularly in RE documents. While ambiguity is a weakness for the NLP interpretation of text, it is also a strength because NLP systems can easily find ambiguities. These ambiguities can be pointed out to the writer and can be corrected.

An underlying assumption in many conversations is that the participants are co-operating with each other. This principle was first set out by Grice [Grice 1975]. It is by no means obvious that this principle applies to all exchanges between Requirements Engineers and the Domain Experts, particularly in situations where the prospect of new systems is unwelcome. The existence of assumptions provides a further opportunity for misunderstandings to arise.

In other words, the way we communicate assumes a vast amount of ‘shared’ knowledge of how the world is. This poses problems when we attempt to use computers for NLP. This is underspecification in NL. This underspecification can also lead to problems when the ‘obvious’ interpretation differs between the Requirements Engineer and the Domain Expert. Again, this weakness in NLP systems can be turned into a strength, because NLP systems can easily find examples of underspecification and point them out to the Requirements Engineer.

Prune this section significantly

Tools for Interacting with Requirements Documents and Domain Experts

 While designing an Information System, many documents may be created. These documents are often interdependent. Moreover, these documents change over time leading to the problem of conflicting documents. Document dependencies along with NLP techniques can aid in maintaining these documents; NLP lexical techniques can be used to explain jargon; and NLP parsing techniques can be used to show ambiguities in design specifications.

NLP parsing techniques can be used to show ambiguities in design specifications. One of the most common problems in documents is that two people give different interpretations to the same string of words. This different understanding can lead to long-term confusion in the project. Technical writers are trained to avoid these ambiguities, but even the best text can be ambiguous. Ambiguity is a common problem for NLP. Humans tend to unconsciously remove a great deal of ambiguity while interpreting a sentence, but it is difficult for machine parsers to remove these ambiguities. However, this makes it easy for NL parsers to flag ambiguities. Once flagged, the writer can easily remove the ambiguities leading to a less ambiguous document.

Sample System

As a test of our ideas, we developed a simple system to detect and flag ambiguity in Requirements Specifications. This functioned by parsing the Requirements Specification, and flagging any sentences which had multiple syntactic interpretations.

They system had the ability to recognise and highlight ambiguities in text.

Undone syntactic ambiguity vs. semantic ambiguity

Traditionally, when considering ambiguity, one thinks of syntax and semantics. Whereas syntax is concerned with the grammatical arrangement of words in a sentence, for example, semantics deals more with meanings of words and sentences.

This was in the form of syntax, as opposed to syntax and semantics. At the same time, however, I wanted the program to ignore those sentences that were, in practice, unambiguous, that is, syntactically ambiguous only, after considering both the syntax and semantics.

The system was based on the Plink parser. [Huyck 94]

In doing my program and project, I was able to use and explore the many features associated with the chart parser Plink, and gained a valuable insight into the complexities of ambiguity and grammar rules, which were the foundation of the parsing process. The program I developed was done so in conjunction with knowledge of the formation of grammar rules and why a sentence would be perceived to be ambiguous.

A grammar was derived

The sample text was taken from

One of the conditions of the project was that it contained some relevance to Requirements Engineering, so the particular piece of text utilised was an extract from a requirements specification, which is a component of Requirements Engineering, written in natural language.

In order to execute this project therefore, there were certain needs.

The first of these was a requirements specifications document, which initially was used to define parsing rules, by analysing the sentences it contained. The most obvious other requirement was adequate grammar. Another requirement was a suitable parser, which would utilise rules that needed to be established, and which would therefore constituted another distinct need. These rules were programmed into a chart parser known as Plink, which I utilised for my project and which uses the programming language Common Lisp. Once this was established, the relevant requirements specification document was needed to test the program. This dealt with the first part of the project, that is, highlighting ambiguous sentences.

This left the second part, that is, ignoring the semantically unambiguous sentences.

Lexical Ambiguity

Each word has one or more senses, as it may be utilised in different situations. Therefore, for a requirements specification document, the total number of senses may be very large. These different senses can be organised into a set of broad classes of objects, by which the world is classified. The set of different classes of object in an interpretation is known as an ontology.

The relevant ontology could be used in conjunction with special types of frames known as case frames, for example.

With Plink, a function known as ‘print-chart’ or ‘pc’ had the effect of displaying the total number of arguments, or possibilities, for every plausible node combination in a sentence, as well as the total number of arguments and constituents for certain parts of the sentence. This included the total number of possibilities including the first and last nodes, that is, the entire sentence including the full stop. I inferred that if a complete sentence had more than one possibility, then it could be deemed as ambiguous. This was later confirmed. Therefore, I decided that I needed to write a program that would somehow count the total number of possibilities, and hence decide whether or not a particular sentence was ambiguous.

We decided that we wanted my program to be able to display sentences that were ambiguous, but ignore ones that were not. Therefore, the next step was to formulate an equation that incorporated the length function in order to solve the problem.

I decided that a sentence would be deemed ambiguous if it had more than one complete intepretation. It was not ambiguous if the length was less than two, that is, one, or even zero. This is because the grammar would not necessarily give an interpretation for each sentence.

Undone expand

The program works well with the information that it has, and does so with the use of complex grammar rules and a relatively large lexicon, which form the foundation of the system, and upon which it is dependent.

My project produced only two parsed sentences, both of which had two or more interpretations with the particular grammar rules utilised.

The aim of the second part of my project was to amend the existing program, or create a new one, so those sentences that were syntactically ambiguous only would be ignored.

I decided that, if the program were to be able to differentiate between different types of nouns, verbs etc., then the relevant case frames generated should contain some sort of distinction for the type of words contained within for the relevant entities. This would have been achieved by incorporating an ontology into the system and, therefore, would have involved the construction of one.

I was expecting each sentence to have at least one interpretation, or possible argument. The reason that this was not the case is due purely to the fact that the particular grammar rules I had were insufficient. This is in terms of complexity, as opposed to content. As a result, there were not enough possible combinations to support the relevant sentences that I had. This clearly suggests that in order to achieve accurate results, more time needs to be invested into the formation of grammar rules.

As one can see, ambiguity is an extremely real aspect of text-based Natural Language Processing. Now, it is easy to speculate that with a more comprehensive grammar, the results would, potentially, have been more accurate. However, by introducing a larger grammar, the amount of prospective ambiguity will also increase, thus creating even more problems.

The program that I have developed, currently, could be utilised as a writing aid. This can be both as part of simple systems and complex systems that were involved with looking for ambiguities in natural language documents or text. Obviously this would involve a certain amount of refinement, but essentially I have developed a working program, that operates as part of a system.
This should include the larger the grammar the more competent it is

However, the larger it is the more ambiguous it is.

You can ignore semantically identical interpretations

Other issues such as lexical ambiguity can be added.

Semantics Improves the System
The aim of the second part of my project was to amend the existing program, or create a new one, so those sentences that were syntactically ambiguous only would be ignored.

I decided that, if the program were to be able to differentiate between different types of nouns, verbs etc., then the relevant case frames generated should contain some sort of distinction for the type of words contained within for the relevant entities. This would have been achieved by incorporating an ontology into the system and, therefore, would have involved the construction of one.

Some sentences are syntactically ambiguous, but virtually every person would interpret them unambiguously [Ford et. al. 1982]. For example, Ford et. al. presented 20 subjects with syntactically ambiguous sentences. One sentence was:

The women discussed the dogs with the policemen.

Example 1.

All 20 subjects gave one interpretation to the sentence: the women discussed with the policemen. The other interpretation has the women discussing dogs and which were with the policemen.

A tool that can flag ambiguous sentences is useful; however, a tool that can flag only truly ambiguous sentences is much more useful. It would reduce the need for the user of the tool to ignore many suggested changes. That is, a tool that flagged only sentences to which different people might give different interpretations would be better than a tool that flagged all ambiguous sentences.

Such a tool could take advantage of the semantic cohesion that people use while parsing sentences. For example, in Example 1., policemen are good participants in a discussion. They are much less good at being things that accompany dogs. This is not to say that they cannot accompany dogs, but they are much better at discussing as far as the participants of the study were concerned. Ford et. al. presented many sentences all of which have two semantically plausible interpretations. Example 2 is syntactically ambiguous sentence that has only one semantically plausible interpretation.

I saw the girl with the boy.

Example 2.

In this example the boy is accompanying the girl. Another interpretation is that the boy was used to see the girl as in the sentence "I saw the girl with the telescope". This second interpretation is not very semantically plausible.

This tool would need to have a sophisticated semantics knowledge base. While much of this knowledge could be domain independent (eg. humans are good actors), much of it would be domain dependent. Consequently, developing this semantics knowledge base would aid in the development of the general domain knowledge based used in the RE process.

I might include some things about ontologies here and how these things might be learned.
Reduce this section. Maybe not
Natural Language and Domain Knowledge

Perhaps the most exciting use of joining NLP systems to RE, is that both need Domain Knowledge to function effectively. Recent NLP systems have functioned quite effectively in a single domain [MUC-6, MUC-7]. NLP solutions to open domain problems have been much less successful. Similarly, RE needs to understand the domain in which it is functioning. Indeed, a Domain Model can be seen as a key product, perhaps even the key product, of RE [Sommerville 1996].

NL systems depend on Domain Knowledge to remove ambiguity and to fill in missing information. An example of ambiguity is the sentence "I saw the boy with the telescope." Was "the telescope" used to see with (attaching to the verb), or was "the boy" carrying it (attaching to the nearest noun phrase)? When a human sees this sentence it is not ambiguous, but the human knows that a telescope is a good thing with which to see. That is Domain Knowledge. A similar example, which is closer to the Information Systems domain, is: "The system should be able to join the sales table with the price table." Our interpretation is that the price table is being combined with the sales table, but another reasonable interpretation is that there are multiple sales table, and the sales table with the price table is the one that the system should be able to join. Domain Knowledge is needed here to resolve the ambiguity.

When text is written, a great deal of information is left out. This information is normally inferred by the reader, or just left blank.

When we read "the boy hit the girl", we do not know what he hit her with. We might infer he hit her with his hand, but we do not know. We can infer this, because we know about the domain of boys, girls and hitting. When we say "the system should join the sales table to the price table" we do not know what will be used to add the two tables together. The Domain Model might tell us that two tables are added using the add method on table. If the Domain Model does not tell us, then we might want to flag this as a missing specification, or we might ask for more information for the Domain Model.

This Domain Model is the key component that is missing from most NL systems. If this can be provided, the system will function much more effectively. At this point, the sceptic will note that the NL system is being used to acquire the Domain Model, yet the system needs the Domain Model to work effectively. Hopefully, there will be synergy. When the Requirements Engineer writes an initial description of the system being modelled, the NL system will process it. This should result in a general Domain Model that can be used on further text. This boot-strapping should enable the NL system to function more effectively on further refinements to the documents.

Things that are important for RE are important for NLP. Three major structures that are important to RE are Objects, Methods, and Method Invocation. These are roughly equivalent to the linguistic structures nouns, verbs and events. As these software structures are added to the Domain Model, their corresponding linguistic structures can be added to the Domain Model. When Methods are added to Objects, it shows which verbs are likely to act on which nouns. When the header of a Method is specified it shows the case structure of a verb
. When a Method is coded, it explains the event; this event will have certain ramifications, and these can be used to fill in missing information in the discourse model.

The Domain Model and the key components of it are necessary for both RE and NLP. In Requirements Engineering without the aid of NLP, the Domain Model is used and built by one set of systems and the Requirements Engineer. NLP systems add additional users and sources of that Domain Model. The NLP systems should add more Domain Knowledge. RE systems, NLP systems, Requirements Engineers, and the end-users should all act as checks on the Domain Knowledge. The NL system could be useful just for this reason. By using NLP systems during RE, the Domain Model may be more easily constructed, more consistent, and more complete.

Rewrite conclusion section
Conclusion

Ambiguity and underspecification are two key problems in RE documents. An ambiguous piece of text may be interpreted in one manner by the Requirements Engineer and in another manner by the Domain Expert. This misunderstanding can lead to real problems. Similarly, NL text leaves things unsaid; it is underspecified. It is up to the reader to fill in the assumption. When the Requirements Engineer and the Domain Expert fill in the assumptions differently, there can be real problems.

NLP systems may help to solve these problems. They can flag ambiguous texts, and note where underspecification occurs. The Requirements Engineer can then either remove the ambiguity or underspecification, or at least agree with the Domain Expert as to the correct solution between ambiguities, or the missing information in underspecified text.

Recent advances in NLP have shown that NLP is at a state where it can be used in real world applications. While NLP systems are not the "silver bullet" that will solve the RE problem, NLP can usefully be used as an aid to RE.

Simple NLP tools can easily be used by Requirements Engineers to simplify their work and to act as simple checks. More advanced NLP tools could be used to help solidify the Domain Model, and to act as translators between various RE documents and formal models.

These "more advance NLP tools" are currently just ideas. We have not implemented a system to automatically acquire Domain Knowledge from a Requirements Specification. However, we should be able to develop such a tool, and other tools. These tools will increase the efficiency and effectiveness of Requirements Engineers.

Bibliography

Abeysinghe, G. and Huyck, C. 1999. Process Modelling with Natural Language Input. International Conference on Enterpise Information Systems. Setubal, Portugal.

Advance Research Projects Agency. 1995. Proceedings of the Sixth Message Understanding Conference, Columbia, MD. August 1995. San Mateo, CA: Morgan Kaufmann Publishers.

Advance Research Projects Agency. 1998. Proceedings of

the Sixth Message Understanding Conference, Fairfax, VA. May 1998. San

Mateo, CA: Morgan Kaufmann Publishers.

Chomsky, Noam. 1966. Syntactic Structures. Mouton and Co. The Haque

Church, Kenneth W. and Lisa F. Rau. 1995. Commercial Application of Natural Language Processing. In Communication of ACM 38:11 pp. 71-80.

Ford, Marilyn, Joan Bresnan and Ronald Kaplan. 1982. A competence-based theory of syntactic closure. In The mental representation of grammatical relations, ed. Joan Bresnan. Cambridge, MA: MIT Press

Grice, H.P. 1975. Logic and Conversation. In Syntax and Semantics 3: Speech Acts. Cole, P. and Morgan, J.P. (eds.) Academic Press

Huyck, C. R. 1994 …. undone

Pressman, Roger. 1997. Software Engineering: A Practitioners Guide Fourth Edition.

Ryan, Kevin. 1993 The Role of Natural Language in Requirements Engineering. Proceeding of the IEEE International Symposium on Requirements Engineering. IEEE Computer Society Press.

Sommerville, Ian. 1996. Software Engineering. Addison-Wesley. ISBN 0-201-42765-6

Yule, George. 1996. The Study of Language. Cambridge University Press ISBN 0521 56851
� The case structure of a verb specifies which arguments are attached to a verb, for instance the verb hit would typically have an actor, an object and an instrument, as in I (the actor) hit the ball (the object) with the bat (the instrument).

PAGE
7

