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ABSTRACT

Humans process information using their neurons and our understanding of how this processing is done is growing daily.  It is widely agreed that neurons represent concepts by highly recurrent neural networks called Cell Assemblies (CAs).  These CAs are learned using a Hebbian learning rule. Using a model of CAs that is simplified but largely consistent with our understanding of neurophysiology, we may develop associative memories.  The Hebbian learning rule can again be used to associate concepts so that synapses  between associated concepts have a lower weight than synapses within concepts, but a higher weight than synapses between unassociated concepts.  An associative memory based on this type of learning would be able to implement host of practical applications including datamining applications and search engines.  Our understanding of CA models is incomplete, but it is clear that they can be used for these practical applications.
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1. Introduction

Cell Assemblies (CAs) are reverberating neural circuits that form the neural basis of concepts.  CAs were first proposed by Hebb [3], and have subsequently been widely studied.  There is a large amount of neuro-biological evidence for their existence in the brain [1,2,11].  A concept is stored in a large number of neurons that are connected via synapses with large strengths.  Neurons fire when they get a large amount of input, so the activation of a few of these neurons will cause the other neurons to activate.  The activation of a large portion of the neurons in a CA is known as ignition and is the neural correlate of remembering a concept. That is, an active CA is a short-term or working memory.

CAs represent both short and long-term memories. The brain does not have concepts when it is created and thus concepts and therefore CAs must be learned.  A CA is learned by adjusting synaptic weights between neurons in the CA.  This is done in an unsupervised manner so that the concepts are things that are selected from the environment.  The organism sees features traveling around together, and the neurons relating to those features have their connections strengthened.  This eventually leads to a network of neurons that is capable of maintaining activation. Concepts are thus groups of features that tend to travel around together.  One advantage of this approach is that the concepts are grounded in the environment.  A concept is learned by repeated presentation of examples of the concept.  The concept is then activated (the CA is ignited) by presentation of an instance of the concept.  The CA can be activated by an instance it has not seen before, and the CA can remain active even after the stimulus has ceased.

CAs are categorisers which evolve by activating a set of neurons where some of these neurons may be shared by other CAs.  When an instance is presented the CA for the category that it is a member of is activated.

Neurons can participate in more than one CA [11].  Practically this means there can be more CAs than there are neurons [13].  So, a CA is a stable state [4] and an attractor state [7] of the network.  It is a set of neurons that are activated and if a sufficiently strong subset is externally activated, the full set will self activate. 

Neurons in a CA have strong connections between them, but they also have connections to neurons outside the CA.  These inter-CA connections allow a sophisticated semantic net to emerge [10].  Concepts that are related have strong connections leading to the formation of related CAs.  This feature can be exploited to implement datamining systems and expert systems. The connections from one CA to another are insufficient to activate the second CA in isolation, but when combined with other activation (evidence) the second CA can be activated. This kind of induced activation can be useful in setting up search engines and datamining systems.

This is largely neuro-psychological theory, but we have been working on computational models of these systems.  Unlike most connectionist systems, we are trying to emulate the important properties of neurons to get important psychological phenomena to emerge.  We have promising initial results, and hope that these results can be transferred to industrial applications as well as neuro-psychological explanations.

2. Learning Rules

Though there is neural evidence of Hebbian learning [8], its precise computational implementation is not clearly  understood and is currently under debate.  The Hebbian learning rule states that the strength of synapse that connects two neurons that tend to fire simultaneously will tend to increase[3].  An obvious extension of this is that Hebbian learning leads to synapses being correlators.  That is, the synaptic weight between two neurons is based on how likely they are to fire together.

We have developed a simple learning rule that makes synapses linear correlators [6]. When the pre-synaptic neuron fires, if the post-synaptic neuron fires X percent of the time, the weight will be X.  This can be modified by a constant so that the weight is X*C, but it still acts as a linear correlator.  There is no need for the synaptic weight to be a linear correlator and this could be replaced by any monotonic function.  However, synapses as linear correlators give us a sound mathematical basis to out learning algorithm.

Synapses as correlators are the basis of learning.  However, these correlators will not be sufficient to cause CAs to grow for a wide range of patterns.  It will not work for patterns that are too dense or are too sparse.  The compensatory learning rule can allow for a wider range of patterns.

The compensatory learning rule modifies the above Hebbian learning rule by including total synaptic strength of the pre and post-synaptic neurons as part of the rule.  When the strength of a synapse is increased, it will be increased more if the sum of the synaptic strengths of the neuron is low.  This encourages CAs for sparse patterns.  Similarly, if the total synaptic strength of a neuron is high, the synaptic strength of a particular neuron is increased less during learning, and more is taken away if strength is reduced.  This encourages dense patterns to break into separate CAs.

3. A Cell Assembly Example

A simple example might help to explain the issues.  A network of neurons gets input directly from the environment.  This network sees various instances of an object, for example a triangle.  When an instance is seen, neurons are activated.  These neurons may react to lines of certain orientations, or to the meeting of two lines.  Each time these neurons are coactive, the strength between them is increased via Hebbian learning, but if one is active without the other the strength is decreased.  

Each triangle is different so different neurons will be active each time.  However, a core subset of  neurons will be active together, leading to a mutual increase in synaptic strength between neurons in the as yet unformed CA.  

The strength based on correlation is too small.  As the neurons are not used in many other CAs, the total synaptic strength of the neurons is small.  Thus, compensatory learning will increase the synaptic strength above the base correlation value.  This will enable the strength to grow sufficiently to enable some self-stimulation of the CA.  At this point, the CA will consolidate rapidly, because it will now activate itself causing a reinforcement loop with Hebbian learning.  Simultaneous firing causes learning, which in turn increases the likelihood of firing. Using this mechanism the CA for triangle is learned.

Now, a new triangle is presented to the system.  Some neurons are activated directly from the environment.  Those inside the triangle CA will cause other neurons in the CA to fire leading to a cascade of neural activity, and the reverberating CA is ignited.

Other neurons not in the CA may also be activated.  Stimulus from a triangle overlaps with that from a square.  Thus the square CA will also be stimulated; however, the triangle CA is in competition with the square and will suppress it, leaving only the triangle CA active.  Other CAs may be activated by the same stimuli; for example, the triangle may be green, so the green CA will also become active.

4. Associative Memory

CAs can easily be used for associative memory.  CAs are good at being a content addressable memory and this can be demonstrated by training sub-components of a pattern over a number of CAs and linking them to interact by sending signals to each other and activate desired patterns. For example, there is a green square, and this CA has connections to the green CA and to the square CA.  So activating the green-square CA by environmental presentation and the colour CA via the question what colour is it, the green CA is activated.

Exploitation of the categorisation properties of the CAs will no doubt lead to a better associative memory model that is implicitly fuzzy and be good at approximating patterns of associations. This can be explained using an example: two almost similar looking patterns (e.g. dog and cat) can be trained. When a particular object is presented, both CAs are activated, however they are in competition because both CAs have mutually inhibitory links.  Due to inhibition only one CA will ignite and will be recalled based on the small differences between the two patterns. Thus defuzzification is implemented via competitive inhibitive-excitatory process.

With CAs, there is the potential to be able to realize variable binding [5]. The possibility of developing a strategy using location binder etc. will no doubt lead to such systems based on CAs to produce better scene analysis models. It has been proved that the variable binding is possible even with a conventional connectionist model [12]. This naturally puts CAs in a strong position to achieve such models. 

5. Large Associative Memories.

Large associative memory (LAM) models can be used to store composite patterns where each component can be a concept/or part of a concept. Once such a system is available, one can have the advantage of viewing the full picture before getting at the low level details. This naturally is dependent on the feasibility of untangling the sub-patterns that makes up the large memory. This is possible with a group of cell assemblies that collaborate to form the model for LAMs. LAMs are useful in modeling and manipulating datamining systems. In our case, the advantage lies in the flexibility in training the patterns in a structured form of our choice so that it will reflect the relationships between the sub-patterns. These relationships may be based on semantics or on some arbitrary concept. This kind of system can be used to build large LAMs. For example, consider the situation where a person cannot remember the name of the band who sang the song ‘Satisfaction’, but can remember that the band had a hit with this song in the 60s, and the singer was Mick Jagger.  By activating these nodes, along with the band node, the person  can come up with the name Rolling Stones. Extracting information by spreading activation in this way would produce the most practical datamining system that can be used by a novice (manager). With Databases it is impossible to return the Rolling Stones without a key relationship. Categorisation is another major property of datamining systems and it can be more easily achieved with a CAs based system because of its ability to co-exists with other CAs and yet respond independently. Changes in features are easier to introduce into CAs than feed forward nets as there is less need for complete retraining of all the CAs involved in a system.  CAs are an incremental learning system which are adaptive.  

Search engines: this can be implemented using associative memory as above or by taking advantage of categorisation.  If a person finds one document they like, they often want to see more documents similar to the original. For example, if documents are grouped, retrieving one gives access to all.  Consider the case where, we ask for a document on "big dogs" and get several returned.  Searching through the list,  we find one we particularly like.  Prior to this all documents have been grouped.  Using the original "big dog" document  we can retrieve other documents in its group. This can be further improved by exploiting the flexible architectural feature of the CAs to, for example, retrieve documents containing “big bad dog” or “large puppy”. Documents are examples of a pattern.  Presenting the document activates the pattern.  Associative memories allow you to retrieve instances of this pattern.

6. Conclusion

CAs are a model of the neural basis of human categorisation and associative memory.  As such, they can be used in three major applications: content addressable memory, datamining, and search engines.  They potentially have substantial advantages over other approaches.  They are superior to symbolic models because they have a basis for grounding symbols in the environment.  They are superior to feed forward connectionist models because they can easily implement incremental learning.  They are superior to RAAM models [9] because they are easy to train and they are much more resistant to saturation.
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