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7 Abstract A natural language parser implemented entirely

8 in simulated neurons is described. It produces a semantic

9 representation based on frames. It parses solely using simu-

10 lated fatiguing Leaky Integrate and Fire neurons, that are a

11 relatively accurate biological model that is simulated effi-

12 ciently. The model works on discrete cycles that simulate

13 10 ms of biological time, so the parser has a simple mapping

14 to psychological parsing time. Comparisons to human pars-

15 ing studies show that the parser closely approximates this

16 data. The parser makes use of Cell Assemblies and the

17 semantics of lexical items is represented by overlapping

18 hierarchical Cell Assemblies so that semantically related

19 items share neurons. This semantic encoding is used to

20 resolve prepositional phrase attachment ambiguities encoun-

21 tered during parsing. Consequently, the parser provides a

22 neurally-based cognitive model of parsing.

23

24 Keywords Fatiguing Leaky Integrate and Fire (fLIF)

25 neurons � Natural language parsing � Timing �

26 Prepositional phrase attachment

27

28 Introduction

29 In 1988, Smolensky claimed that ‘‘neural models of cog-

30 nitive processes are … currently not feasible’’ (Smolensky

31 1988). This paper describes a neural simulation of a

32 sophisticated, modern cognitive model of parsing which

33 leads to the conclusion that, while Smolensky’s statement

34 may have been true in 1988, it is now possible to model

35 cognitive processes with simulated neurons.

36A natural language parsing system implemented entirely

37in simulated neurons is described. The paper does not

38describe the full details of the parser, but the code, written

39in Java, can be found at http://www.cwa.mdx.ac.uk/

40CABot/parse4.html. The parser is a component in the sec-

41ond Cell Assembly Robot (CABot2) agent (see section

42‘‘CABot’’).

43While a synapse by synapse, or neuron level, description

44of the system would be far too long and inappropriate here,

45a higher level description at the level of the Cell Assem-

46blies (CAs) (see section ‘‘Neuropsychology’’) that operate

47by the systematic firing of the simulated neurons is pro-

48vided. This description and simulation evidence shows that

49the parser meets the following four goals:

501. The system parses in a manner that is linguistically,

51cognitively and neurally plausible While linguists do

52not agree on all aspects of language, there is broad

53agreement on some areas, and the parser should be

54consistent with these areas of agreement. In other

55linguistic areas there is not agreement, and in this case

56the parser should be consistent with at least one theory.

57There are a range of cognitive phenomena that could

58be modelled; the parser does not need to account for all

59of them, but should account for some of the important

60ones. There are a range of neural models, but there is

61also a trade-off between level of detail and the speed of

62the simulation. The mapping between the simulated

63neural model and biological neural topology needs to

64be reasonably accurate, but the simulation needs to

65be efficient. Where neural mapping inaccuracies are

66imposed, due to, for instance, the number of neurons

67that can be simulated in real-time, then there should be

68a path to duplicating performance, in this instance, if

69there were more neurons in the simulation. It is
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70 hypothesised that similarity in the substrate that

71 supports cognition and language in human and AI

72 systems will directly improve the latter’s parsing

73 capabilities, i.e. making performance closer to that of

74 people.

75 2. The system resolves Prepositional Phrase (PP) attach-

76 ment ambiguity PP attachment ambiguity is a difficult

77 problem for natural language parsing. Example 1 is

78 a commonly used sentence with a PP attachment

79 ambiguity.

80 (example 1) I saw the girl with the telescope.

81 The PP with the telescope can be attached to (modify)

82 the verb saw so that it is an instrument, or can attach

83 to the noun phrase the girl so that she has it. Resolving

84 PP attachment ambiguity is important because it is one

85 of the many instances of semantics being needed to

86 resolve syntactic decisions. In example 1, attachment

87 to saw is more probable since telescopes are normally

88 used for seeing, but replacing tool for telescope might

89 shift the attachment to the noun phrase the girl.

90 3. The system parses relatively effectively The system

91 must parse a reasonable subset of English to be

92 convincing, and it must be clear how it could scale up

93 in a relatively straightforward manner. Similarly, the

94 system is a part of the functioning CABot2 agent and

95 must be effective for it.

96 4. All of the above involve semantics, so the system must

97 represent semantics in a reasonable fashion For a

98 system to handle natural language effectively, it must

99 deal with its combinatorial nature. It must be able to

100 cope with a practically unlimited number of sentences,

101 and, in particular, generate a different semantic repre-

102 sentation for sentences that do have different meanings.

103 The remainder of the paper is broken into sections,

104 starting with its background and related work. This is fol-

105 lowed by a section on the neural model, and then a section

106 on the CABot2 parser itself. These are followed by a sec-

107 tion on the empirical results of the parser on the test

108 materials. The results show that it correctly parses, in times

109 similar to those found in human subjects, and that it

110 resolves PP attachment ambiguities correctly. The paper

111 concludes with a discussion of the quality of the CABot2

112 parser as a functioning system and as a cognitive model,

113 and how it can be improved.

114 Background

115 The over-arching long-term goal for research in this area is

116 to develop an AI system that is capable of understanding

117 and producing language at a level that is at or near the level

118of an adult human. It is hypothesised that the best way to

119do this is to develop a model that behaves in a fashion that

120is both psychologically and neurally close to that of the

121human one. For such a system to succeed, however, it must

122have an understanding of semantics that is similar to a

123human’s. It must, among many other things, ground sym-

124bols (Harnad 1990), have sensory input, and function in an

125environment. As a fully intelligent system is a huge goal,

126this paper describes a system that starts to solve a particular

127subgoal.

128The particular subgoal is to develop a parser based on

129neurons that parses in a neurally and psycholinguistically

130plausible manner. Moreover, as this parser is a compo-

131nent in a working agent (Huyck 2008), it must be effec-

132tive, efficient to simulate, and able to work with other

133subsystems.

134An earlier version of the system (Huyck and Fan 2007)

135was based on a stack and was used for CABot1, the first

136version of the CABot agent. Unfortunately, the dynamics

137of this earlier system led it to spending a large amount of

138time managing the stack (see section ‘‘The binding prob-

139lem’’). Moreover, the simulation time was too long and the

140putative biological time of the CABot1 parser was also

141well beyond that of human parsing.

142Consequently, a stackless parser was developed for

143CABot2. This is similar to a range of psycholinguistic

144parsers including one (Lewis and Vasishth 2005) based on

145the ACT-R system. Nonetheless, this stackless parser still

146had to account for a traditional problem of neural parsing

147systems, the variable binding problem.

148The binding problem

149The binding problem (Von Der Malsburg 1986) needs to

150be resolved to allow compositional semantics and syntax

151(Fodor and Pylyshyn 1988). For instance, a standard

152mechanism for representing the semantics of a sentence

153is a case frame representation (Filmore 1968), where a

154sentence like example 2 is represented by the head verb

155see and two slot filler pairs, the actor I, and the object the

156girl. However, the slots need to be bound to the appro-

157priate filler for successful sentence parsing. For example,

158the object slot would need to be filled by the boy in

159example 3.

160(example 2) I saw the girl.

161(example 3) I saw the boy.

162Binding is simple for symbolic systems, because a

163variable can easily be given a value and subsequently have

164that value replaced. It is a basic operation on all standard

165computers.
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166 A range of non-neural connectionist binding mecha-

167 nisms also exist. Tensor product binding has been used

168 (Smolensky 1990). Recurrent multilayer perceptrons

169 learning via backpropagation (Mikkulainen 1993) have

170 also been used.

171 The most commonly used mechanism for binding in

172 neural simulations is binding by synchrony (Von Der

173 Malsburg 1981), where bound neurons fire with a similar

174 oscillatory pattern. Another option is binding by active

175 links (van der Velde and de Kamps 2006), where special

176 reusable circuits are developed to bind items.

177 In related work (Huyck and Belavkin 2006), a systemwas

178 developed that bound via Long-Term Potentiation (LTP).

179 However, this interfered with other learning, leading to

180 the stability-plasticity dilemma (Carpenter and Grossberg

181 1988). This dilemma is the ability of a neural system to learn

182 new information, while retaining the appropriate older

183 information.

184 As in the earlier CABot1 parser (Huyck and Fan 2007),

185 the CABot2 parser uses Short-Term Potentiation (STP) to

186 bind. STP is a form of Hebbian learning that occurs in

187 biological neural systems (Hempel et al. 2000; Buonomano

188 1999). Hebbian learning implies that the co-firing of two

189 neurons tends to increase the synaptic strength between

190 them. With STP, this synaptic strength returns to its initial

191 value automatically over a relatively short period of disuse

192 (s or min), thus the binding is quick (approx. 40 ms) and it

193 can be reused.

194 Neural and other connectionist parsers

195 Interest in neural and other connectionist parsers is not

196 new. While non-neural connectionist parsers may have no

197 direct link to neural processing, they may provide a useful

198 set of metaphors.

199 One early parser was a component of a larger connec-

200 tionist natural language processing system (Mikkulainen

201 1993). This system used a recurrent back-propagation

202 network to parse. Unfortunately, these types of systems

203 have problems with longer sentences since earlier portions

204 of the sentence must be retained in the activation patterns

205 of the context nodes. Moreover, the overall system used

206 several different types of connectionist system, so the

207 overall architecture is quite ad hoc.

208 Another parser (Henderson 1994) uses a connectionist

209 system (Shastri and Aijanagadde 1993) based on associ-

210 ations. These associations use a frame system with

211 dynamic binding via synchrony. It is known that certain

212 constructs, like multiple centre embedded sentences, are

213 difficult for humans to parse. As the number of bindings

214 that the system supports is limited, the system also finds it

215 difficult to parse these types of sentences. Activation

216 decay and simulated annealing have been used to resolve

217attachment decisions (Kempen and Vosse 1991). One of

218the problems of most non-neural connectionist parsing

219models is that there is little notion of time; while such

220parsers must use word order information, this does not

221provide timing data.

222However, one hybrid-connectionist parser (Tabor and

223Tanenhaus 1999) uses attractor basins, and the time the

224parser takes to descend into a basin corresponds to the time to

225make a parsing decision, that is, how long it takes to apply a

226parsing rule. This is in the spirit of the CABot2 parser, as Cell

227Assembly ignition (see section ‘‘Neuropsychology’’) is

228equivalent to descent into an attractor basin (Amit 1989).

229Similarly, simulated annealing (Kempen and Vosse 1991) is

230related to statistical mechanics, which is used to formalize

231attractor basins.

232Non-neural connectionist parsers may provide insight

233into parallel processing, but lack any direct link to neurons.

234Even though it may be more difficult to develop systems

235based on models with direct links to neurons, there have

236been prior neural parsers. One such parser used a spiking

237neural model to parse a regular language (Knoblauch et al.

2382004). Importantly, like the CABot2 parser, this parser was

239embedded in an agent. This shows that parsers can be

240developed in simulated neurons.

241Further evidence of the ability to develop parsers using

242simulated neurons is the CABot1 parser (Huyck and Fan

2432007). The CABot1 and CABot2 parsers have many sim-

244ilarities, but the earlier parser uses a stack and there are

245some indications that the human parser does not (Lewis

246and Vasishth 2005). Both the CABot parsers make exten-

247sive use of Cell Assemblies.

248Neuropsychology

249Hebb introduced Neuropsychology (Hebb 1949) and pro-

250vided science with an intellectual bridge between neurons

251and psychology. One of his key concepts was that of the

252Cell Assembly (CA).

253The CA hypothesis is that a CA is the neural basis of a

254concept (Hebb 1949). A CA is a set of neurons that have

255high mutual synaptic strength. There is now extensive

256evidence that the brain does contain CAs (e.g. Abeles et al.

2571993; Bevan and Wilson 1999; Pulvermuller 1999).

258Moreover, the CA concept has also been extensively used

259to explain and model cognitive tasks (e.g. Kaplan et al.

2601991; Von Der Malsburg 1986; Wennekers and Palm

2612000).

262When a small subset of the neurons in a CA fire, a

263cascade of activation ensues that leads to CA ignition

264(Wennekers and Palm 2000); the CA can then persist after

265the initial stimulus (the initial small subset of triggered

266neurons) has ceased. This persistence is the neural imple-

267mentation of psychological phenomena such as short-term

Cogn Neurodyn

123
Journal : Large 11571 Dispatch : 9-3-2009 Pages : 14

Article No. : 9080
h LE h TYPESET

MS Code : CODY99 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

268 or working memory. The formation of the CA in the first

269 place is done via Hebbian learning, and this neural for-

270 mation constitutes a long-term memory.

271 The CA hypothesis gives two types of cognitive neu-

272 rodynamics. The first and faster dynamic is CA ignition,

273 where neurons fire and start a cascade that can then persist.

274 The second and slower dynamic is CA formation, which is

275 an emergent phenomena from a large number of synaptic

276 changes. This is often called the dual-trace mechanism.

277 It has been proposed that CAs gradually lose activity

278 over time (see section ‘‘Complex rules and multi-valued

279 cell assemblies’’). One proposition that bridges the gap

280 between neuropsychology and parsing is that the stack that

281 is typically used for parsing is implemented by this gradual

282 loss of activity (Pulvermuller 2000). This proposal is in the

283 spirit of memory based parsers (see section ‘‘Psychology

284 and linguistics’’) including the stackless CABot2 parser.

285 Psychology and linguistics

286 The research literature in both psychology and linguistics is

287 far too vast to summarize here. There is, however, some

288 research that attempts to unify these research fields. For

289 example, cognitive architectures (e.g. Anderson and Lebiere

290 1998) are systems whose ultimate goal is to be able to model

291 all cognitive functions. Similar work based on neural models

292 (e.g. Rolls 2008) is in its infancy and here the ultimate goal of

293 these systems is to show how the brain’s neural systems can

294 be modelled with simulated neurons to perform all cognitive

295 functions.

296 Similarly, in linguistics there are unifying theories. The

297 most famous is universal grammar (Chomsky 1965), but

298 this is largely about the way that humans learn language.

299 The tripartite theory (Jackendoff 2002) fits parsing into a

300 larger linguistic system, and then into a psychological

301 model. This theory shows how different aspects of lin-

302 guistics (e.g. semantics, syntax and the lexicon) inter-

303 relate. The theory is not, however, universally accepted.

304 Some linguistic theories are almost universally accep-

305 ted. These include the use of case frames to represent the

306 semantics of a sentence (Filmore 1968) and bar-levels

307 (Jackendoff 1977) to account for simple and complex

308 phrases. Perhaps more importantly, and related to universal

309 grammar, is the notion of a combinatorial system. In this,

310 language is composed of components that can be combined

311 in a tree-like structure that has a practically infinite number

312 of possible topologies. Connectionist systems have been

313 criticised for a lack of compositional syntax and semantics

314 (combinatoriality) (Fodor and Pylyshyn 1988), but this

315 criticism is largely addressed by neural mechanisms used

316 for implementing variable binding (see section ‘‘The

317 binding problem’’).

318There has been a vast range of psycholinguistic work on

319parsing. In linguistics, a distinction is often made between

320performance and competence, with many psycholinguists

321expressing the view that performance is not their concern,

322so, in such circumstances, parsing is performance. While

323many linguists may express a lack of interest in perfor-

324mance, they are not saying it is not of interest in general.

325Psycholinguistic work in parsing can be divided into

326work that focuses on ambiguity, and work that focuses on

327memory. One, of many approaches, that focus on resolving

328ambiguity is a constraint based algorithm (MacDonald

329et al. 1994) which simultaneously resolves lexical and

330syntactic ambiguity. This has been tested on PP attachment

331ambiguity among other phenomena. Also, work in eye

332movement studies (Rayner 1998) (see section ‘‘Timing’’)

333has been extensively used to deal with back-tracking and to

334show that humans make incorrect parsing decisions, and

335have to go back and repair them. The incorrect decisions

336illustrate some of the biases of the human parser.

337A modern example of a memory based parser (Lewis

338and Vasishth 2005) is based on the ACT-R cognitive

339architecture (Anderson and Lebiere 1998). In this model,

340each word and phrase is represented by a symbolic memory

341chunk that has an associated activation level. This level

342decreases over time, although it is reactivated when the

343memory is re-accessed and this level is guided by ACT-R’s

344equations. These equations have been used in a wide range

345of other psychological models, both linguistic and non-

346linguistic. The activation levels are then used to resolve

347attachment decisions. For instance, this mechanism can be

348used to account for center embeddings and to fail to

349interpret center embedded sentences that people find dif-

350ficult to interpret.

351The CABot2 parser is a memory based parser that is able

352to resolve the types of ambiguity discussed above. By the

353use of frames, it is capable of generating a combinatorial

354representation of semantics.

355The neural model

356This paper’s results and conclusions depend on the simu-

357lated neural model being a reasonably accurate biological

358model. The neural model that forms the basis of CABot2 is

359a fatiguing Leaky Integrate and Fire (fLIF) model. It is not

360as accurate as compartmental models (e.g. Hodgkin and

361Huxley 1952; Dayan and Abbott 2005), but is much more

362efficient to simulate. As parsing is complex, efficiency of

363simulation is important. The fLIF model is an extension of

364the more popular Leaky Integrate and Fire (LIF) model

365(Tal and Schwartz 1997), which is in turn an extension of

366the Integrate and Fire model (McCulloch and Pitts 1943).
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367 A brief description of the fLIF model is given below,

368 and a more detailed one can be found elsewhere (Huyck

369 1999, 2007). In the Integrate and Fire model, a neuron

370 collects activation from other neurons, and fires when it has

371 sufficient activation to surpass a threshold h. When the

372 neuron fires, it sends activation to each neuron to which it

373 has synapses, and the activation is directly proportional to

374 the weight associated with each synapse. The fLIF model

375 uses discrete cycles, so the activation that is sent from a

376 neuron that fires in a cycle is not collected by the post-

377 synaptic neuron until the next cycle. If a neuron fires, it

378 loses all its activation, but if it does not fire, it retains some,

379 while some activation leaks away (decay); this is the leaky

380 component and is modelled by a factor D[ 1, where the

381 activation is divided by D to get the initial activation at the

382 next step.

Ait ¼
Ait�1

D
þ
X

j2Vi

wji ð1Þ

384384 Equation 1 shows the activity of a neuron at time t. The

385 neuron combines the retained activation after leak and the

386 new activation from the active inputs of all neurons j 2

387 Vi;Vi being the set of all neurons that fired at t - 1 that are

388 connected to i, weighted by the value of the synapse from

389 neuron j to neuron i.

390 The LIF model is a widely used model of biological

391 neurons, although the extension of having neuron fatigue is

392 relatively novel. The idea of fatigue is that the more a

393 neuron fires, the harder it becomes to fire, that is, neurons

394 tire. This is modelled, in this paper, by each neuron having

395 an additional fatigue value which is increased by a con-

396 stant, Fc, in cycles in which the neuron fires, and decreased

397 by a constant, Fr, in cycles where the neuron does not fire.

398 The value never goes below zero, and the neuron’s fatigue

399 value is added to the threshold, h, to establish if a neuron

400 fires. So, if a neuron becomes highly fatigued, then it will

401 need a great deal of activation to fire. This is shown in

402 Eq. 2, where the neuron fires at time t if its activity A

403 minus fatigue F is greater than the threshold.

Ait � Fit � h ð2Þ

405405 One emergent property of fatigue across all the neurons

406 in a CA is that fatigue can cause a CA to stop firing.

407 Practically, it is used in the CABot2 parser to show how

408 long a memory item has been active (section ‘‘Complex

409 rules and multi-valued cell assemblies’’), and to

410 automatically shut down rules (section ‘‘Simple rule

411 activation and instantiation’’).

412 The LIF model is widely used because it is a simple

413 model of a neuron that is relatively accurate biologically.

414 The fLIF model is slightly more complex, and is a slightly

415 better model. A model similar to the one described in this

416 paper (Chacron et al. 2003) has been shown to mimic

417biological neural responses, particularly with respect to

418neuronal adaptation, and does provide a more accurate

419simulation than the simpler LIF models.

420CAs composed of fLIF neurons can interact with each

421other in a range of ways. Perhaps the simplest is for one

422CA to cause another to ignite, which is done by having

423neurons from the first send sufficient activation, via

424synapses, to the second to ignite it. A more complex

425mechanism is to require two CAs to be on to ignite a third,

426while neither of the original alone is sufficient to ignite the

427third. Requiring two CAs to be active to ignite a third is a

428mechanism for controlling spreading activation. This

429mechanism can be used to implement finite state automata

430(Fan and Huyck 2008). A third type of interaction is to

431have a CA suppress another so that its neurons stop firing

432(the second CA is extinguished). The processing of the

433CABot2 parser is driven by these types of CA interactions.

434The CABot2 parser

435The CABot2 parser is merely a network of fLIF neurons

436with a symbolic interface to allow each word in a sentence

437to be input. There is also a mechanism for converting the

438subsymbolic semantic representation into a symbolic one

439for output. CABot2 has a network of 30,000 neurons which

440have been divided into 15 subnetworks. The threshold, h;

441decay, D; fatigue; Fc; and fatigue recovery, Fr remain

442constant within a subnetwork but may differ between

443subnets (see Table 1). These subnets have been used to

444facilitate the system’s development, but they also fit a

445logical, and to lesser extent a psycholinguistic, structure.

Table 1 Subnetwork Constants and Sizes for the CABot2 Parser

Name Threshold Decay Fatigue Fatigue rec. Neurons

Input 4 1.5 0 0 3,000

Noun Access 4 2.0 0.8 0.8 1,800

Verb Access 4 2.0 0.8 0.8 900

Other Access 4 2.0 0.8 0.8 900

Next Word 4 12.0 0 0 200

Bar One 4 1.5 0.8 0.8 200

Rule One 4 2.0 0.5 0.4 1,200

Noun Semantics 4 2.0 0.8 0.8 10,200

Verb Semantics 4 2.0 0.8 0.8 5,400

Noun Instance 4 1.5 0.01 0.011 2,000

Verb Instance 4 1.5 0.01 0.011 1,000

Counter 4 2.0 0 0 600

Rule Two 4 1.2 0.5 0.45 1,800

PP to NP 4 1.25 0 0 400

PP to VP 4 1.25 0 0 400
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446 Overall topology

447 Figure 1 is a schematic of the network. Each box refers to a

448 subnet except the Access box, which refers to three sepa-

449 rate subnets: the noun access, verb access, and other lexical

450 item access subnets. Information largely flows from the top

451 to the bottom with Input leading to Access and Semantics

452 then being activated. Composite structures are built in the

453 Instances with the Rules and Bar One subnets explicitly

454 invoking state changes.

455 The overall topology adheres to a tripartite linguistic

456 theory (Jackendoff 2002). In this theory there are separate

457 lexical, syntactic, and semantic systems. These communi-

458 cate by special communication systems (e.g. the lexical

459 syntactic communication system). The lexical system is on

460 the top right of the figure with the Input subnet entirely

461 within that system. The syntax system is on the top left

462 with the rules entirely within the syntax system. The

463 semantics system is on the bottom with the instances

464 entirely within that system. The other subnets cross these

465 systems boundaries. For example, the access subnets are

466 part of the lexical syntactic communication system. Note

467 that the focus of the CABot2 parser has been on the syntax

468 system; the lexical system in particular is under specified,

469 and the semantic system is somewhere in between. The

470 tripartite theory also allows extra links from these systems

471 to others, e.g. from semantics to other systems such as

472 perception, planning and action.

473 The particulars of these subnets are more fully explained

474 below. The number of neurons in the subnets and the

475 parameters are largely driven by expediency. That is,

476 engineering decisions had a large role in determining these

477 parameters. The explanation of the subnets starts with the

478initial input and traces the processing of the example 4

479sentence in the following sections.

480Input, access and semantics

481Input is a symbolic action that is achieved by activating the

482CA for the input word, and only one word is active at a

483time. This is done when a particular rule CA in the Rule

484One subnet ignites: the Read Next Word rule. This rule also

485ignites the first CA of the Bar One subnet called Word

486Active. So to start parsing, the Read Next Word rule is

487ignited. The next Input CA, consisting of 100 neurons,

488is then ignited, and remains active until the next input is

489received.

490The Bar One subnet has two CAs of 100 neurons. The

491first is called Word Active, and is active while the input

492word is directly activating CAs in other subnets. The sec-

493ond CA in Bar One is Bar One Active. This relates to X-bar

494theory (Jackendoff 1977); roughly, there are simple and

495complex phrases, with the simple phrases being bar one, so

496the Bar One Active CA is firing while the simple phrase is

497being constructed.

498(example 4) The girl saw the dangerous pyramid with

499the stalactite.

500Parsing the sentence from example 4 starts with the

501Read Next Word rule being ignited, which turns on the

502Input CA for The, and the Word Active CA in the Bar One

503subnet. The combined activation from these two CAs is

504enough to cause the The CA in the Other Access subnet to

505ignite. Each word has an element in one of the access

506subnets; there is no lexical ambiguity resolution in the

507CABot2 parser, so, for instance, left is always a noun and

508centre is always a verb.

509Later, the word girl is read. This causes the girl input

510CA and the Word Active CA to ignite. These combine to

511ignite the Noun Access CA for girl. This sends activation to

512the Noun Semantics subnet, which ignites the semantics for

513girl. Each noun and verb is semantically represented by a

514hierarchical series of features. In the case of girl, this

515consists of girl, person, living-thing, object, and physical-

516entity. For nouns, this hierarchy is derived from WordNet

517(Miller 1990). For verbs, this hierarchy is derived from a

518verb hierarchy available locally. This type of hierarchical

519encoding can be learned (Huyck 2007), but for reasons of

520technological expediency when implementing it on a PC,

521CABot2 had its hierarchical encoding hard-coded.

522It should be noted that this topology of CAs is incon-

523sistent with current understanding of CAs in biological

524systems. Firstly, aside from the two semantic subnets,

525where CAs share neurons, CAs are orthogonal with each

526neuron being in only one CA. Secondly, CAs are by and

527large composed of sets of features that are in turn

Fig. 1 Gross topology of the CABot2 parser. Each box represents a

subnet with similar subnets grouped together according to Jackend-

off’s Tripartite theory
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528 composed of 10 neurons. These neurons once on, oscillate

529 from one set of five firing, to the other five firing. This is a

530 persistent CA, but is not the kind of CA that has been

531 learned in past simulations. This was done to minimise the

532 number of neurons used, and to mathematically guarantee

533 behaviour. Unfortunately, simulation time slows markedly

534 as the number of neurons and synapses increase, so the

535 simulations are forced to use a relatively small number of

536 neurons. It is expected that the same behaviour could be

537 generated using larger CAs that are less uniform.

538 Simple rule activation and instantiation

539 The syntax system builds simple phrases and complex

540 phrases. The result of rule applications are stored in the

541 instance nets, in bindings between the instance nets, and

542 bindings from the instance nets to the access nets.

543 For example, the combined activation of Word Active

544 and the the Access CAs causes two rules to ignite, both in

545 the Rule One subnet. One is the New Noun Instance rule.

546 This causes a new instance to become active in the Noun

547 Instance subnet. Instances are the data structures that are

548 populated by parsing.

549 Instances are managed by the Count subnet, whose sole

550 purpose is to note the next free noun instance and verb

551 instance. Initially there are no verb or noun instances. This

552 is represented in the Count subnet by having a CA asso-

553 ciated with zero for each of these. These CAs prime, but do

554 not ignite, the CAs associated with a count of one. When

555 the New Noun Instance rule ignites, it stimulates all of the

556 Count’s noun CAs. As the only one that is primed is the

557 one CA, it ignites, and in turn extinguishes the zero noun

558 count. This count CA in turn ignites the first noun instance

559 in the Noun Instance subnet. As yet, there is no information

560 in the instance, but it is now active. A duplicate mecha-

561 nism is used to get a new verb instance when the New Verb

562 Instance rule is applied. Instances follow case frame theory

563 (Filmore 1968), and the overall grammar with features is

564 amenable to analysis from unification-based grammar

565 (Shieber 1986), and head driven phrase structure grammar

566 (Pollard and Sag 1994).

567 As noted above, two rules ignite simultaneously. The

568 second rule that ignites along with the New Noun Instance

569 rule is the NP adds det rule. This switches on the deter-

570 miner feature of the open noun instance. This is done again

571 by having two CAs on and these two turn on a third CA, or,

572 as in this case, a third subCA. Features are represented by

573 neurons in the instance. The rule stimulates the determiner

574 features of all the noun instances and the open noun

575 instance stimulates all of its bar one features. Together,

576 these turn on the determiner feature.

577 Figure 2 shows firing behaviour in the Verb Instance,

578 Rule One and Rule Two subnets. Each dot represents a

579neuron firing in a particular cycle. The Verb Instance

580neurons are the bottom 500 neurons, and it can be seen that

581it begins around cycle 65, and persists through to the end of

582the parse. It can also be seen that different rules ignite at

583different times.

584Instances can be in one of four states. The first is

585inactive, meaning that no neurons are firing. The second is

586open, meaning that a simple noun phrase is under con-

587struction. Part of X-bar theory states that there is at most

588one simple phrase currently under construction at any time

589(Jackendoff 1977). The third and fourth states of instances

590are the active complex phrase state, and the done state (see

591section ‘‘Complex rules and multi-valued cell assem-

592blies’’). When an instance is started, it is open, and this is

593marked by having a specific feature in the instance firing.

594When the instance is closed, this feature is turned off.

595The NP adds det rule also turns off the Word Active CA

596in the Bar One subnet, meaning that the net has finished, or

597is about to finish, with processing a word. It also turns off

598the The CA in the Other Access subnet.

599The NP add det rule then switches off automatically

600through a combination of loss of external input (Word

601Active is now off), and fatigue. The fatigue constant is

602greater than the fatigue recovery one (see Table 1), and

603neurons are on in only half of the cycles. This causes

604fatigue to accumulate, eventually, as the neurons do not

605have enough activation to surpass the threshold plus fati-

606gue, so they stop firing after nine cycles, and so the CA is

607extinguished.

608The Next Word subnet now comes into play. The system

609will try to apply any rules that it can. However, if no rule

610has applied in 10 cycles, the Next Word rule in the Rule

611One subnet will come on. This is done by the Next Word

612subnet which is a counter. It counts 10 cycles using 10

613pseudo-CAs. Each of these pseudo-CAs turns on the next,

Fig. 2 Rastergram of the verb instance and rule SubNets. The first

500 neurons are verb instances, the next 1,200 from Rule One, and the

remainder from Rule Two
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614 and turns off the prior one. The first pseudo-CA also turns

615 off all of the others except the second. All of the rules

616 turn on the first one, and this implements the counter. The

617 last of the pseudo-CAs turns on the Next Word rule in the

618 Rule One subnet.

619 As noted in section ‘‘Input, access and semantics’’, girl

620 now comes into the Input subnet. It then, in collaboration

621 with other subnets, turns on the girl CAs in the Noun

622 Access and Noun Semantics subnets.

623 As before, the Word Active CA is on; in collaboration

624 with the girl Noun Access CA, the NP adds N rule ignites

625 in the Rule One subnet. This turns on the Main Noun

626 feature in the open noun instance. This feature is repre-

627 sented by some neurons that learn via STP (see section

628 ‘‘The binding problem’’). These neurons connect to all of

629 the noun instances, and as the only noun instance that is

630 active is girl, this instance is bound to girl after a few

631 cycles of co-firing.

632 Next the NP Done rule is applied. This turns off all noun

633 access CAs, and both Bar One CAs. This means the system

634 is done with the word, and done with the instance as a

635 simple phrase. The rule also turns off the noun instance by

636 switching on the Bar One Done feature.

637 Note that there are parallel features for Bar One Done

638 and Bar One Open. The open feature is turned off when the

639 instance is done, but the open feature has fast bind neurons

640 that bind to the rest of the features if they are turned on.

641 This provides memory within the instance. A duplicate

642 mechanism is used to support features in the verb instances.

643 A similar process now occurs with the word saw. The

644 Next Word rule comes on, which causes saw to be propa-

645 gated through to the verb access and semantics subnets. A

646 new verb instance is created, and saw is made the main

647 verb when the VP adds Main Verb rule is applied. The

648 Verb Done rule is then ignited, and the verb instance is

649 closed.

650 Complex rules and multi-valued cell assemblies

651 Having processed saw, two instances are available and the

652 system can now apply phrase combination rules. These

653 rules are in the Rule Two subnet, and are quite similar to

654 the simple phrase creation rules. These rules will not be

655 applied when a simple phrase is under creation because

656 they are inhibited by the Bar One Active CA.

657 A few cycles after the VP Done rule for saw ceases

658 firing, the VP ? NPactor VP rule is applied. This rule

659 receives activation from both the verb instance and the

660 noun instance. When it ignites, it firstly turns on the verb’s

661 actor slot (feature). This slot has neurons that learn via

662 STP, and these neurons have connections to all of the noun

663 instances. The only active noun is the instance that is

664 bound to the girl, and so it is bound as the actor after a few

665cycles. The actor slot also turns on the actor-done feature

666which inhibits further application of the rule, and turns off

667the actor slot so that no further binding will occur. Addi-

668tionally, the noun instance has its bound feature turned on,

669so that it will no longer be used as a slot filler. Note that the

670application of VP ? NPactor VP can be seen in Fig. 2; it

671can be seen at neuron 2,300 near cycle 100. Other rules can

672be picked out.

673This rule application is quite similar to the application of

674simple noun phrase rules. However, two problems arise:

675the first is that there needs to be multiple rules for each slot;

676the second is that without a stack, some mechanism is

677needed to select between rules.

678Without a stack, some mechanism is needed to select

679between rules. In the above example, the VP ? NPactor

680VP rule is selected instead of the VP? VP NPobject rule.

681The system has no explicit idea of order, so how does it

682know to select the actor rule?

683The answer to this lies in the third state of instances (see

684section ‘‘Simple rule activation and instantiation’’). Having

685been completed as a simple phrase, both instances are in

686the third state (active complex phrase). Also, when an

687instance is created, a set of its neurons are activated that act

688as a counter for how long the instance has been active. This

689system is set up in groups of eight neurons with six neurons

690firing in each cycle. As ðFc � 3Þ\Fr (see Table 1), the

691circuit accumulates fatigue. Due to fatigue these counter

692neurons gradually stop firing; this is how it acts as a

693counter. For a more complete explanation see (Passmore

694and Huyck 2008). Each instance CA has a set of counter

695neurons. This can be seen in Fig. 2, where the counter

696neurons are between 300 and 500. These start out firing,

697and then gradually decline.

698The counter neurons are used as input to the actor and

699object rules. For the actor rule, extra activation comes from

700the verb because it is more active. For the object rule, extra

701activation comes from the noun because it is more active

702when the object rule is applied. Passive constructions could

703be folded in with a passive feature on the verb instance.

704Additionally, rule CAs have mutual inhibition, so while

705one is active, others must wait until it has completed.

706To return to the example, the dangerous pyramid is

707processed in a similar manner to The girl, and a new

708instance is duly created for it. When this instance is com-

709pleted, the VP ? VP NPobject rule is applied, and it is

710bound to the object slot of the verb. Similarly, with the

711stalactite is made into a noun instance with the preposition

712feature set.

713At this stage, there is a PP attachment ambiguity that is

714resolved to attaching with the stalactite to the pyramid.

715That is, the rule NP ? NP PP is applied. Note that while

716the instance for the pyramid has its bound feature on, it is

717still open to having something bound to it. In this case the
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718 PP modifier feature of the pyramid is bound to the noun

719 instance for with the stalactite.

720 This is a proactive form of attachment that has been

721 used in other natural language processing models. Unlike

722 traditional context free parsers, it focuses on attaching

723 items as soon as possible. For words, it has been suggested

724 that each word is incorporated into the sentence immedi-

725 ately (Milward and Cooper 1994). For phrases, this is a

726 form of left-corner parsing, e.g. (Roark and Johnson 1999).

727 Another problem is closing off phrases so that they

728 cannot have another phrase attached to them. This happens

729 to the first noun phrase in example 5.

730 (example 5) I saw with the telescope.

731 Here the noun phrase I is incorporated into the verb frame

732 by the application of the VP? NPactor VP rule, however,

733 the noun instance is still active, and thus the prepositional

734 phrase with the telescope could be attached to it. This is

735 prevented by a feature in the noun instance that is turned on

736 by the actor rule. When this feature is on, the noun

737 instance, has moved to the fourth state, done.

738 Attention should be drawn to one major difference

739 between the two rule subnets. They have different decay

740 rates with Rule One having a decay of 2, and Rule Two a

741 decay of 1.2. This means that in each cycle when a neuron

742 does not fire, more activation leaks away from a neuron in

743 the Rule One subnet than from a neuron in the Rule Two

744 one. This also means that evidence can take longer to

745 accumulate for the phrase combination rules in Rule Two.

746 Figure 2 also shows that the number of Rule Two appli-

747 cations is much smaller than the number of those from

748 Rule One.

749 This evidence is used to make more complex decisions

750 in, for example, PP attachment. Here the system makes use

751 of known attachment decisions to decide how to attach a

752 PP. There are two subnets, the PP to NP and PP to VP

753 subnets which are used for making attachment decisions.

754 These subnets get activation from the Noun Semantics and

755 Verb Semantics subnets that is sufficient to ignite particular

756 CAs when the appropriate words are active. For example,

757 one CA in the PP to VP subnet gets activation from saw,

758 girl, and telescope, that is sufficient to ignite it. This CA in

759 the PP to VP subnet in turn sends activation to the VP ?

760 VP PP instrument rule, causing it to ignite and be applied.

761 Similarly, one CA in the PP to NP subnet gets activation

762 from move, door and handle, and sends activation to NP?

763 NP PP.

764 Results

765 The CABot2 parser is not capable of parsing all English

766 sentences, but it does parse several common constructs

767correctly. It is a relatively capable parser which can handle

768the basic commands that are needed within the CABot2

769computer game environment and produce correct semantic

770output. More importantly, it is based on a neural model

771with a link to biological time, and parses in times that are

772similar to human timing data. It resolves PP attachment

773ambiguity in a way that appears to be similar to the way

774humans resolve these ambiguities, and demonstrates one

775way that semantics can be involved in making parsing

776decisions. Finally it can be readily incorporated into a

777neural agent, and thus can make use of evidence that is not

778normally available to other computational parsers, but is

779available to the human parser.

780Semantic output

781The CABot2 parser has been tested on 27 sentences, and

782produces the correct semantic output for all of these. This

783is a small number of sentences, but does include a range of

784constructs including imperative sentences, multiple PP and

785NP slots, and PP attachment ambiguities. Aside from PP

786ambiguities, all sentences that have the same lexical format

787will parse correctly. Even with the small number of words

788in the current lexicon, 28, this means thousands of sen-

789tences can be parsed by the system.

790The semantic results of a parse are calculated by turning

791all neurons off, then turning the first verb instance on. This

792spreads activation through the bindings to other instances,

793and then on to the Access subnets. After 45 cycles, by

794which time the system will be stable if a parse is suc-

795cessful, the nets are measured to create a symbolic version,

796and this is the semantic output of the sentence.

797The noun instances have the determiner, preposition,

798adjective, main noun and prepositional phrase modifier

799slots. The verb instance has the main verb, actor, object,

800location and instrument slots. All of these were tested and

801behaved correctly on the 27 sentences.

802Timing

803An important consideration for a neuropsychological parser

804is that it parses in the correct time, that is, in times

805equivalent to those obtained from experimental human

806performance data. The fLIF neural model is based on

807cycles, and these cycles correspond roughly to 10 ms of

808biological time. The neurons are not much faster because

809they ignore refractory periods and synaptic delays, all of

810which happen generally in under 10 ms. Also, biological

811neurons generally do not spike more than once in a 10 ms

812period.

813Similarly, humans read at a wide range of speeds. None

814the less, studies have been done using eye tracking to see

815when people foveate (fix their eyes) on particular words.
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816 This is one widely used way to measure how people are

817 parsing sentences (Rayner 1998).

818 van Gompel et al. (2001) used eye tracking to see how

819 people read sentences with PP attachment ambiguities.

820 Figure 3 gives a comparison of the CABot2 parser and the

821 human performance data. The x-axis represents the word in

822 the sentence that is being read, and the y-axis is time in

823 milliseconds. The solid line is the parser’s performance

824 assuming that each cycle is 10 ms and that each word’s

825 processing is completed before the next word is read. The

826 dotted lines represent human performance; humans do not

827 foveate on each word and the human data was reported by

828 groups of words. In the example, the words were grouped

829 as follows: The girl, saw, the dangerous pyramid, with the,

830 and stalactite; the additional period is included to show the

831 end of the parse. The reported data was averaged across a

832 range of sentences with the same lexical content. The

833 human data that is reproduced in Fig. 3 is the total time

834 spent on a word group for ambiguous sentences. The parser

835 data was counted from the cycle that a new word was read,

836 indicating that processing of the prior word had been lar-

837 gely completed.

838 The CABot2 parser performs with almost the exact same

839 timings as the human data. The time to parse the complete

840 sentence is 2,940 ms for the parser and 2,931 ms for the

841 human model. The average difference between the five

842 comparable data points is 55.2 ms.

843 This is not to say that the CABot2 parser is a perfect

844 model of human parsing timing. For instance, the parser

845 does not back track, and it is known that on some sentences

846 people do. Nonetheless, it does parse in roughly the correct

847 time, giving some support to the notion that it is doing

848 something like the human parser.

849PP-attachment

850The CABot2 parser does resolve PP attachment ambigui-

851ties. Seven sentences were tested and all were attached

852correctly. The sentences are shown in Table 2. The first

853column represents the attachment decision that the parser

854makes for the sentence in the third column. The second

855column represents how the parser makes the decision and is

856further elaborated below.

857The first sentence is the standard PP attachment exam-

858ple. People typically resolve this sentence, in the null

859context, by attaching the PP to the Verb so that the tele-

860scope is used as an instrument for seeing (Ford et al. 1982).

861As described in section ‘‘Complex rules and multi-valued

862cell assemblies’’, there is a particular CA in the PP to VP

863subnet that is used to store the preference to attach this PP

864as the instrument of the verb. This CA is ignited by a

865combination of evidence from see, girl and telescope. The

866ignited preference CA in turn ignites the appropriate

867grammar rule. As the decision is stored, Table 2 marks this

868as stored.

869For the second sentence, see and telescope still send

870activation to the preference CA, but alone are insufficient

871to ignite the rule. However, as the words are stored as a

872semantic hierarchy, boy shares many neurons with girl, and

873those shared neurons also send activation to the preference

874CA. Consequently, the preference CA is ignited followed

875by the grammar rule. In this case, the decision is not

876explicitly stored, but instead derived via a hierarchical

877relation, so Table 2 marks this decision as inherited.

878Similarly, the third sentence has the attachment prefer-

879ence stored, but in this case it is stored in the PP to NP

880subnet so that the door has the handle. Again, this CA is

881ignited by a combination of the three inputs, and turns on

882the appropriate grammar rule. The fourth sentence is sim-

883ilar to the third, but the decision is not stored. The

884semantics of the words door and gate share neurons, so

885together they are sufficient to ignite the preference CA.

Fig. 3 Time spent to parse by word the sentence The girl saw the

dangerous pyramid with the stalactite

Table 2 Sentences with PP attachment ambiguities tested, their

attachment to noun or verb, and the method of ambiguity resolution

used

Attachment Method Sentence

Verb Stored I saw the girl with the telescope

Verb Inherited I saw the boy with the telescope

Noun Stored Move the door with the handle

Noun Inherited Move the gate with the handle

Noun Default Turn the telescope with the pyramid

Verb Stored Move it toward the stalactite

Verb Inherited Move it toward the pyramid
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886 In the case of the fifth sentence, no preference CA is

887 ignited. Consequently, the default behaviour occurs, and

888 the PP is attached as a modifier of the noun. Note that

889 sentences three and five are lexically identical. However it

890 takes two cycles (or 20 ms) longer to begin to apply the

891 NP ? NP PP rule for sentence five. That is, the default

892 decision takes longer as there is less information available.

893 Finally, the sixth and seventh sentences attach the PP to

894 the verb. The difference here is that they differ on the NP

895 instead of on the PP. This shows that inheritance works

896 on different elements, even though the elements are dif-

897 ferently weighted.

898 Elsewhere (Nadh and Huyck 2009), hierarchical rela-

899 tions have been used to learn attachment preferences,

900 although in a symbolic system. This shows that the basic

901 idea can be translated to a neural system. However, it is not

902 clear how well the neural approach will scale. That is, the

903 use of hierarchical CAs for the semantics of words may in

904 itself be insufficient to resolve a large number of decisions

905 as different preference CAs may begin to conflict. None the

906 less, it is obvious how these preference CAs can be gen-

907 erated for any learned relation.

908 CABot

909 People parse sentences in the context of both related sen-

910 tences and in the broader environment in which the

911 sentences occur. Particularly during conversation, parsing

912 interacts with other cognitive systems both receiving

913 information from them, for example, to resolve referential

914 ambiguity, and providing information to them. The

915 CABot2 parser is a component of an agent called CABot2.

916 The agent exists in a video game, and the agent, including

917 the parser, is implemented entirely in fLIF neurons.

918 At this stage, the agent is relatively simple and has gone

919 through two major versions with associated minor versions.

920 CABot2, the most recent, uses the CABot2 parser while

921 CABot1 used the earlier stack based parser. Timing for

922 CABot1 provides one of the major reasons for the devel-

923 opment of the CABot2 parser: the stack-based parser was

924 too slow. While a command like Turn toward the pyramid.

925 takes around 200 cycles in the CABot2 parser, it takes 800

926 in the stack-based parser due to time needed for stack

927 erasing.

928 The CABot agents act to support a user in the game. The

929 parser interprets commands from the user and uses the results

930 of these commands to set its internal goals. The game

931 requires that CABot2 interpret and implement 12 different

932 imperative commands. The parser generates the correct

933 interpretation for all of these.

934 Various minor versions of the agents have been devel-

935 oped to explore a range of capabilities, and two versions

936 are particularly relevant to this paper. In one version of

937CABot1, the labels of some visual semantic categories

938were learned by presenting them simultaneously with

939visual instances of the category. This labelling is a portion

940of the solution to the symbol grounding problem (Harnad

9411990). Similarly, a second variant of CABot1 used an item

942in the visual field to resolve the referent of the command

943Turn toward it, showing the agent supports pronoun reso-

944lution by context.

945The CABot2 parser is being used for the next version of

946the agent that is currently under development, CABot3. It

947will need to understand about 20 new commands, but this

948should be a straightforward extension to the current parser.

949CABot3 will also use the above labelling work from the

950variant of CABot1.

951Discussion and conclusion

952The four main goals of the CABot2 parser, laid out in the

953introduction, have been met. Most importantly, the system

954parses in a linguistically, psychologically, and neurally

955plausible manner. That is not to say that it is a perfect

956model, but it is consistent with current theories and data

957obtained in all three fields. It is consistent with several

958linguistic theories (e.g. Filmore 1968; Pollard and Sag

9591994; Jackendoff 2002), parses a context free grammar,

960and has a combinatorial representation of semantics that is

961extensible to all linguistic semantics. It parses in a psy-

962chologically plausible manner following a psycholinguistic

963model (Lewis and Vasishth 2005). Short and long-term

964memories are handled according to the long standing

965neuropsychological CA hypothesis. Timing of short-term

966memories and overall timing of parsing is consistent with

967psychological evidence. The basic fLIF neural model is a

968reasonably accurate, albeit relatively simple, model of

969biological neurons. While the simulated neural topology is

970specified, and in some cases biologically unlikely (e.g. 10

971oscillating neurons for a feature, and mostly orthogonal

972CAs, see section ‘‘Input, access and semantics’’), it does

973make use of CAs and in some cases hierarchical CAs.

974These simplifications are caused mainly by a forced limi-

975tation of size. Although biologically unlikely (and aside

976from some very strong synapses), the topology does not

977violate any known neural organisation principles.

978As is almost certainly the case with people, preposi-

979tional phrase attachment ambiguity is resolved by

980semantics. In the cases where the attachment is known, it

981performs flawlessly, that is, the system is capable of storing

982pre-calculated decisions. Moreover, it is capable of han-

983dling novel attachment decisions due to the hierarchical

984nature of the stored semantics and their activation of

985attachment preference rules. This use of the four-tuple

986(verb, noun, preposition, noun) has been shown to be
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987 effective in symbolic systems (Ratnaparkhi et al. 1994;

988 Nakov and Hearst 2005; Nadh and Huyck 2009) getting

989 more that 90% of decisions correct. However, it is intended

990 that future parsers, using context information, may perform

991 at or near human levels.

992 The CABot2 parser is relatively effective. It correctly

993 parses all of the test sentences in the current CABot

994 commands, and, as the topology has no randomness, it

995 parses these correctly every time. The expectation is that

996 this can be easily expanded to account for the further 20 or

997 30 commands that the next CABot agent will need to

998 understand. Moreover, the whole parsing process is rela-

999 tively efficient in both simulated and actual time. An

1000 additional and important advantage is that the relatively

1001 few neurons used for parsing leaves more available for

1002 other types of processing (e.g. vision and planning).

1003 Finally, the parser uses a reasonable semantic model.

1004 The representation of words as semantic hierarchies is one

1005 aspect of this, along with noun and verb instances to

1006 implement frames to store the semantics of phrases and

1007 sentences. This storage approach allows specific queries

1008 made of a sentence to interact with other systems, and

1009 CABot uses these instance frames to set its goals.

1010 As the four main goals have been met, the CABot2

1011 parser qualifies as a cognitive model. As a cognitive model,

1012 it provides evidence for the type of grammar that is used

1013 showing that a unification-based grammar can be used. It

1014 shows that PP attachment can use hierarchical relations to

1015 resolve ambiguity. Finally, the timing results show that

1016 proactive attachment can be efficiently implemented.

1017 While the CABot2 parser handles standard, prototypical

1018 English, parses in human-like time, and handles PP attach-

1019 ment ambiguity, it is by no means an industrial grade

1020 parser or even a particularly good psycholinguistic model.

1021 The belief is that by using the same techniques used to

1022 develop the parser, it could readily be scaled up, but this

1023 may not be the best way forward. Instead, a better under-

1024 standing of the neurodynamics of the system could be

1025 gained while developing a parser that learned rules and that

1026 a better parser would result from this. Of course, parallel

1027 improved understanding of the dynamics could also

1028 improve other related and connected systems that would

1029 also improve parsing performance.

1030 These improvements and expansions will run into a

1031 simulation boundary. The CABot2 parser has 30,000 neu-

1032 rons and systems with 100,000 fLIF neurons have been

1033 simulated in real-time on a standard PC, where real-time

1034 means a cycles takes 10 ms to simulate, or 100 cycles

1035 take about a second. Expansion beyond 100,000 neurons

1036 has radically slowed simulations. These sizes could be

1037 improved by improved hardware, distributing the simulator

1038 across PCs, or a more efficiently coded simulator, but it is

1039 expected that special neural hardware (Khan et al. 2008)

1040will be available within a year or two. This should enable

1041simulations in real-time of a billion neurons.

1042Scaling up is relatively straightforward for words and

1043grammatical constructs. The addition of new words and

1044lexical classes is merely a linear change in the number of

1045neurons, that is, each new word will only increase the

1046number of neurons as much as the last word and perhaps

1047less than this due to the hierarchical encoding of semantics.

1048Grammar rules can readily be added, although phe-

1049nomena like conjunction and gapping need further

1050exploration. Since the CABot2 parser is based on current

1051linguistic theories that account for these phenomena,

1052however, such extensions are about implementation detail

1053and not fundamental to the neurally based parsing approach

1054reported.

1055For example, in the current system, there is a rule for

1056VP ? VP NPobject that makes the NP the object of the

1057verb. Unfortunately, there are three versions of this rule,

1058one for the first NP instance, one for the second, and one

1059for the third. The problem is that each needs activation

1060from only one noun instance, and all from the single verb

1061instance. If there were only one rule, multiple instances

1062would all contribute activation to the rule and cause it to

1063activate at the wrong time. This problem might be resolved

1064by dynamic binding using active links (van der Velde and

1065de Kamps 2006) or some other hierarchical activation

1066mechanism, but it is currently a recognised flaw in the

1067CABot2 system.

1068The problem with multiple versions of rules for different

1069instance pairs (see section ‘‘Complex rules and multi-valued

1070cell assemblies’’) is currently unsolved and could, in theory,

1071lead to an explosion of rules as sentences grow longer. There

1072is, of course, some upper sentence length limit for normal

1073human parsing. Moreover, in the CABot2 parser, most

1074instances are turned off early in processing so do not need to

1075be accounted for. A dynamic binding mechanism can prob-

1076ably be developed to overcome any remaining problems

1077concerning multiple rules.

1078Other linguistic systems, like a lexical system, phonet-

1079ics, or discourse interpretation, or systems for production of

1080all of these, could be developed and integrated with the

1081parser. A lexical system could be used to resolve lexically

1082ambiguous and polysemous words like saw. It is expected

1083that these efforts would be of a similar degree of com-

1084plexity to parser development but would be made easier by

1085the skills, techniques, and knowledge already gained.

1086Crucially, while these systems would be largely indepen-

1087dent according to the tripartite theory, they would function

1088in parallel. Thus the full system would process at roughly

1089the same, simulated, speed.

1090While the CABot2 parser could be scaled up, and sys-

1091tems developed for other tasks, a better approach would be

1092to develop systems that could learn the underlying rules,
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1093 whether syntactic, lexical, phonological or of other types.

1094 Initial work has begun on rule learning with CAs (Huyck

1095 and Belavkin 2006; Belavkin and Huyck 2008), but it is

1096 still in its early stages. Integrating rule learning with var-

1097 iable binding (see section ‘‘The binding problem’’) is one

1098 obvious next step. When this issue is resolved, the system

1099 will only need to be provided with the basics of Universal

1100 Grammar (Chomsky 1965) and other systems (e.g. sensing,

1101 effecting, and semantics) to learn to parse. Of course, the

1102 difficulty of these tasks is not to be underestimated.

1103 Considering what brain areas these subnets simulate,

1104 aside from some work on words (Pulvermuller 1999), and

1105 the knowledge that Broca’s area is heavily involved in

1106 language processing, at this stage any proposed link would

1107 be highly speculative, although one could pursue Ander-

1108 son’s (Anderson and Lebiere 2007) proposals linking

1109 cognition to eight brain areas.

1110 It does appear that the CABot2 parser is a reasonable

1111 cognitive model. If so, then this is proof that Smolensky’s

1112 claim is out of date and that neuralmodels are now capable of

1113 being used for sophisticated cognitive modelling. More

1114 importantly, these neural cognitive models may be able to

1115 address new problems that symbolic and non-neural con-

1116 nectionist systems cannot, such as timing, word coding, and

1117 the neural implementation of memory, both short and long-

1118 term. The link to neural data may also provide simple solu-

1119 tions to problems that are otherwise difficult to solve. Neural

1120 models also can solve the symbol-grounding problem that

1121 cause problems for symbolic systems. It therefore seems

1122 reasonable to expect that the development of these models

1123 will lead to better AI systems.
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