Information Retrieval and Categorisation using a Cell Assembly Network

Christian R. Huyck

Viviane Orengo

Middlesex University

c.huyck@mdx.ac.uk

v.orengo@mdx.ac.uk

Abstract: Simulated networks of spiking leaky integrators are used to categorise and for Information Retrieval (IR). Neurons in the network are sparsely connected, learn using Hebbian learning rules, and are simulated in discrete time steps. Our earlier work has used these models to simulate human concept formation and usage, but we were interested in the model's applicability to real world problems, so we have done experiments on categorisation and IR. The results of the system show that congresspeople are correctly categorised 89% of the time. The IR systems have 40% average precision on the Time collection, and 28% on the Cranfield 1400. All scores are comparable to the state of the art results on these tasks.

Keywords: Information retrieval, Categorisation, Neural network, Cell assembly, Hebbian learning

1. Introduction

For the past several years we have been developing neural models to simulate mammalian neural processing [8,9,10]. In this paper we apply these neural models to two real world problems.

Hebb proposed Cell Assemblies (CAs) as the basis of human concepts [6] over 50 years ago. CAs are reverberating circuits of neurons that can persist long beyond the initial stimulus has ceased. There is a wide range of agreement that CAs do form the basis of human concepts, and solve a wide range of other problems [2,13]. Our earlier experiments have been successful in simulating a range of behaviour that CAs are responsible for.

Human concepts are complex, so we should be able to use our CA networks for other simpler tasks. In doing so we no longer need to adhere to all of the biological constraints.

Two difficult tasks are categorisation and Information Retrieval (IR). By using a simple version of our network we can categorise congressional representatives as either republicans or democrats based on their voting record.

Our model can also be used for IR. By specifying the network topology using a series of texts, we can learn relationships between words. This network of relationships can then be used to retrieve documents based on queries and the running of our network.

In the next section we describe our neural network architecture and the learning rules that we use. In the third section, we describe our categorisation simulation. The fourth section describes our IR experiments. The fifth section is a discussion of how the two experiments influence and are influenced by CA issues. The concluding section points out some current limitations of the system but also points out how a wide range of problems can currently be solved using this architecture.

2. Cell Assembly Networks

The basis of our computational model is mammalian neural processing. The neurons are modelled by spiking fatiguing leaky integrators in discrete time steps. Neurons are connected via uni-directional synapses, and learning occurs by synaptic modification. We use unsupervised learning rules to change synapses, and the changes are based solely on the properties of the pre and post-synaptic neurons.

Processing is broken into discrete time steps. On each time step, any neuron that should fire does fire, and all activation levels are updated. Neurons learn using Hebbian learning rules. Neurons are connected by a small number of synapses per neuron and also in a biologically plausible manner. Below we explain neurons, learning, and the network's topology more thoroughly.

2.1 Neurons

A neuron fires if it has enough activation to surpass the activation threshold; if a neuron fires it loses all of its activation. When a neuron fires, it sends activation through its synapses to other neurons. The energy that is sent is equivalent to the weight of the synapse. This energy is not counted until the next time step. If a neuron does not fire, some of its activation leaks away.

The activation of a given neuron i at time t is:

[image: image1.wmf]å

Î

-

+

=

V

j

ji

t

i

it

w

k

h

h

)

1

(

 Equation 1

The current activation is the activation from the last time step divided by a leak factor k plus the new activation coming in. This new activation is the sum of the inputs of all neurons j(V, weighted by the value of the synapse from neuron j to neuron i; V being the set of all neurons that are connected to i that fired in time step t-1. However, if the neuron fired in the prior time step, no activation carries over from t-1 (k is infinite).

Neurons, like muscles, also fatigue. So a neuron should not be able to fire over and over again. This is modelled by raising the activation threshold each time a neuron fires, and reducing the threshold, to at most the base level, when a neuron does not fire.

2.2 Hebbian Learning

One of the strengths of this model is that it uses a simple form of unsupervised learning: Hebbian learning. Hebbian learning increases the weight of the synapse when both pre and post-synaptic neurons fire. To prevent saturation of the synapse, the weight is decreased when one of the neurons fire and the other does not. The decreasing rule is called an anti-Hebbian rule. However, there is a range of learning rules that fit within this definition.

The rules implied by Hebb are correlatory rules. That is, the synaptic weight represents the correlation of the two neurons.

Most of our prior work has dealt with pre-not-post forgetting rules. That is, if the pre-synaptic neuron fires, and the post-synaptic neuron does not, then reduce the strength. Our simple correlatory learning rule combines a learning rule with a pre-not-post anti-Hebbian rule and makes the synaptic weight approximate the likelihood that the post-synaptic neuron fires when the pre-synaptic neuron fires [8].

In this paper, we have also used a post-not-pre anti-Hebbian rule that reduces the synaptic weight when the post-synaptic neuron fired and the pre-synaptic neuron did not. A post-not-pre correlatory anti-Hebbian rule makes the synapse represent the likelihood that the pre-synaptic neuron fires when the post-synaptic neuron fires. We use this in the IR experiments (see section 4) for reasons explained there.

We also make use of a compensatory learning rule as opposed to a correlatory rule. Correlatory rules reflect the likelihood that the neurons co-fire. Compensatory rules are a modification of the correlatory rule that limits the total synaptic strength of a neuron. This gives neurons with low correlation more influence, and reduces the influence of highly correlated neurons. These rules are more thoroughly described in [9].

2.3 The Network

In our biologically inspired topologies, we use distance biased connections. This implies that a neuron is likely to have a connection to nearby neurons, but unlikely to have connections to any given distant neuron. In the brain this is useful because it reduces the amount of axonal cable that is needed.

For both the categorisation and IR tasks, we have entirely ignored this distance biased constraint. For the categorisation task we have used random connections, and for the IR task we have used co-occurrence in the documents as a basis of connectivity. We did not use distance-biased connections, because we were not particularly interested in forming stable states, but in the short term dynamics.

The brain also has inhibitory neurons and our normal model makes extensive use of these. However, in these experiments we are using only excitatory neurons. We did not use inhibitory neurons because we were only interested in behaviour after a few cycles; inhibitory neurons allow CAs to compete, but this takes dozens of cycles.

Our prior work has dealt with CAs and the power of these networks come from neurons that learn relations based on environmental stimulus. This work models mammalian brains. However, mammalian brains have layers of cortex that translate sensory data into internal features. In these experiments we have skipped these layers of cortex and directly encoded environmental input into the net. This allows us to directly exploit the co-occurrence of features.

We are not using CAs in this work. We are using the early stages of CAs to map co-occurrence of features, and this is a simple but powerful mechanism.

3. Categorisation

We used a readily available categorisation problem [1], the 1984 U.S. Congressional Voting Records database. This consisted of 435 records including each congressperson's party affiliation and voting record on 16 bills. All 17 fields were binary (yes or no, or Republican or Democrat), and the voting fields could be omitted.

We needed a mechanism to present the data to our network. This was done by making a 17x20 network of neurons. We used only excitatory neurons and each neuron was randomly connected via synapses to 40 other neurons. Each of the 17 rows represented one feature, 10 neurons for a yes vote or Republican, and 10 neurons for a no vote or Democrat. In training mode, the appropriate neurons were activated. So if someone voted for on all 16 bills, 170 neurons would be fired. If someone did not vote on a particular bill, those neurons were not fired. An example network is shown in figure 1.

[image: image2.png]Active Neurons: 160

Figure 1 Example Network Activation

In this example, the first row has the left 10 neurons firing, so it represents a Republican. The second row has the right 10 neurons firing, so this congressperson voted no on the first bill; the third row is empty meaning he did not vote on the second bill; and the fourth row has the left 10 neurons firing, so the congressperson voted yes on this bill. In all he voted for 15 of the 16 bills and with his party affiliation, this leads to 160 neurons firing.

In the testing mode, the votes were presented by activating the appropriate neurons, but the first row would be omitted. The system then ran, and activated Democratic and Republican neurons. After 5 cycles of presentation and spread of activation, the number of neurons were totalled. If more Republican neurons were active, the congressperson was categorised as a Republican. If more Democratic neurons were active, or an equal number, the congressperson was categorised as a Democrat.

We trained the system by presenting each of the records to the network for one cycle. Activation was then erased and the next record presented. We did this for each of the training records, then repeated the process 5 times, for a total of 1740 cycles.

We used the correlatory learning rule, so synaptic strength should have been roughly equal to the likelihood that the post-synaptic neuron fired when the pre-synaptic neuron fired.

Though the same Hebbian algorithm is used, this is a type of semi-supervised learning. The answers are presented, but they are presented as any other feature, not as a special answer feature.

We performed a standard five-fold analysis on the 435 voting records. This required five networks to be learned. The results are shown in Table 1. A given network was trained on 348 records, and tested on 87. The table shows that the average performance is 89%.

Standard
Reverse

Network 1
.93
.88

Network 2
.90
.75

Network 3
.84
.90

Network 4
.91
.88

Network 5
.87
.91

Average
.89
.86

Table 1 Performance on Categorisation Task

It was also a simple thing to train the network on 87 records and test on the remaining 348, a reverse five-fold analysis. The results are also shown in Table 1. Somewhat surprisingly the results are almost as good in this test. Clearly, our network can generalise from a small set of data at least for this task.

Prior work on this indicates that the best possible results for this task are between 90 and 95% [14]. Consequently, this method performs near the best possible levels.

Our network handles missing data seamlessly. If a congressperson does not vote on a bill, that row is simply not activated in training or in testing. Similarly, the same mechanism could be used to see how a certain person would vote on a particular bill. Instead of omitting the test case's party affiliation, the vote on the bill could be omitted, and the network could predict that congressperson's vote.

Another nice property of this network is that it gives you an idea of confidence of the decision. For instance, the system may have 10 Republican neurons and no Democratic neurons for a particular test, and one Republican and no Democratic neurons for another.

Clearly the system is more confident in the first decision. A simple measure of this confidence is the absolute value of the difference of Republican and Democratic neurons. When the system is highly confident, it is almost always right. Using the standard five-fold test, 200 cases have a difference of 9 neurons, and only 2 are misclassified. Table 2 shows a more complete breakdown by confidence. The columns refer to the absolute difference between Republican and Democratic neurons. The running percentage column refers to the percentage correct if the system guessed at this level and above while the absolute percentage column refers to the percentage correct if it guessed only at this level.

Neural

Difference
Running

Percentage
Absolute

Percentage

10
.99
.99

9
.99
.99

8
.99
.97

7
.98
.92

6
.97
.88

5
.95
.71

4
.95
.73

3
.93
.58

2
.92
.54

1
.89
.31

0
.89
.67

Table 2 Performance Based on Confidence

4. Information Retrieval

The goal of IR is to match user queries to documents stored in the database. A typical IR system comprises: stop word removal, stemming, weighting, indexing, and ranking algorithms. This section explains how we have used CA networks as an IR system. We describe the method, report on experiments carried out, and the results achieved.

4.1 Basic Structure of Retrieval

Documents are composed of terms. In our model, each term is represented by a neuron. The network is presented with documents by activating the neurons that represent the words in the documents. As the documents are presented, the weights of the synapses between neurons are adjusted. This leads to weights that reflect co-occurrence of words in documents.

Once the learning phase is concluded, the network is presented with queries. The queries consist of a set of terms that describe an information need. The neurons corresponding to those terms are stimulated and send activation to other neurons causing them to fire. This leads to a cascade of neural firing increasing with each time step. Documents that have similar neural activation patterns are retrieved.

One of the most widely applied techniques to improve recall in an IR system is query expansion. The basic idea is to accommodate term usage variations by expanding the terms in the query using related terms. Normally, this is done using a thesaurus that adds synonyms, broader terms and related words. However, manually constructed thesauri are not always available, therefore research in new methods for automatic query expansion has been quite popular. Some proposed approaches include: term clustering [11], automatic thesaurus construction [3], and Latent Semantic Indexing [4].

Our CA network provides embedded query expansion, since when we stimulate query terms, they send activation to related terms, automatically expanding the query. As the query expands it becomes similar to documents. This, in effect, is search only by query expansion, followed by a direct similarity measurement between the query and documents.

The similarity between queries and documents is calculated using Pearson's Correlation [7], which varies between -1 and 1. A correlation of 1 denotes that the patterns are identical and a correlation of -1 indicates that the patterns do not share any features. We compare the state of the network at some point after the query has been presented against all documents and then rank them in decreasing order of correlation.

The standard IR evaluation involves two measurements: recall and precision. Recall measures the proportion of relevant documents that have been retrieved and precision measures the proportion of retrieved documents that are relevant. In order to calculate those figures, we need a test collection containing documents, queries, and relevance assessments that tell for each query which documents should be retrieved. The typical evaluation calculates precision at 11 recall points (0%, 10%, ... 100%).

4.2 Problem of Under and Over Similarity

One problem for our system is that any given word pair is not very likely to occur in any document. Consequently, our standard method of randomly connecting neurons would lead to the vast majority of synapses having no weight after training. During a query, these small weights would lead to no neurons being activated aside from the query neurons. To solve this under similarity problem, we fixed the connectivity of the network. Neurons were connected only to neurons when the words they represented co-occurred in some documents.

However, our initial attempts led to an over similarity problem. That is, each query presented led to the same neurons being activated. This was due to frequent words having high connection weights which caused them to be activated on every query. This relates to the Term Frequency Inverse Document Frequency (TF-IDF) problem explained more thoroughly in section 5.1. In order to solve this problem, we used three mechanisms that rewarded frequent words less. Firstly, we tested a different topology; secondly, we tried a pre-not-post learning rule; and thirdly, we used a compensatory pre-not-post learning rule.

When we solved the under similarity problem, we connected each neuron to the 40 neurons that represented the words that co-occurred most frequently with the word the neuron represented. This made neurons that represented the most frequent words have more connections to them. Consequently, when we tested, those most frequent words always became active. A different solution was to randomly choose among the words that co-occurred, thus penalising frequent words.

A second mechanism we used was to change our learning rule. We used a post-not-pre anti-Hebbian rule instead of our typical pre-not-post rule (see section 2.2). This tended to reduce the weight of synapses going to frequent words.

The third mechanism was to use compensatory learning. Here the learning rule uses total weight coming into a neuron, and tries to bring the total weight toward a constant. So, neurons with low correlations to them have the synaptic weights increased, and neurons with high correlations to them have the synaptic weights decreased.

All three of these mechanisms have the effect of making frequent words less important, and infrequent words more important. This is desirable because words that occur few times within a collection are more distinctive and therefore are more important.

4.3 Results

We carried out experiments using two standard IR collections: the Time Magazine collection, containing news articles from 1963; and Cranfield 1400, containing abstracts in aeronautics. We used the Porter stemmer [12] to remove word suffixes, and we also removed stop words according to the list provided by SMART [15]. Table 3 shows some characteristics of the collections used.

Time
Cranfield

Number of Documents
425
1400

Number of Queries
83
225

Number of Terms
7596
2629

Table 3 Characteristics of Test Collections

Each term occurring in more than one document was assigned a neuron. Each neuron has connections to 40 other neurons. We have tried two types of networks: (i) connecting each neuron with the 40 neurons it co-occurs most and (ii) connecting each neuron with any 40 neurons it co-occurs with. We also tested correlatory versus compensatory learning rules.

During the learning phase, each document was presented to the network for 1 cycle. This was repeated 20 times. At the end of this process the synaptic weights have been set. The queries were then presented, we allowed the activation to spread for 5 cycles, and then saved the status of the network. The status corresponding to each query was compared to the activation pattern of each document using Pearson's correlation.

Table 4 shows a summary of our results in terms of average precision. Compensatory learning was superior to correlatory learning on both sorted and random topologies. This happened because compensatory learning provides a mechanism for dealing with common words, which has a similar effect to TF-IDF.

We also observed that the random network was better than the sorted topology. This is evident in the performance of both topologies using both compensatory and correlatory learning. In the sorted topology, again common words benefited, being activated by most queries.

Run
Time
Cranfield

Correlatory – Random
0.3361
0.1715

Compensatory – Random
0.4021
0.2812

Correlatory – Sorted
0.1930
0.0138

Compensatory – Sorted
0.3583
0.1267

LSI (TF-IDF)
0.3038
0.1708

Table 4 Performance in Average Precision

Compensatory learning provided more improvement than the random topology and thus was a more important factor. However, the mechanisms can be combined, and the best system combined compensatory learning with the random topology.

We have also compared post-not-pre and pre-not-post learning. The later being more efficient. For the Time collection our best result with post-not-pre used a random topology with compensatory learning and had a 20.97% average precision (not shown in the tables or figures). The similar pre-not-post achieved 40.21%. In pre-not-post learning, we control the amount of activation going into the neurons as opposed to restraining the amount of activation they emit. This reduces input to common words.

[image: image3.png]06

0s

04 —e—comprand
—=— comp-sorted

03 —a—corrrand

02 —— corsorted
—— LSl Fid)

01

0o

00010203 04 050607 0809 10
Recall

Figure 2 Recall-Precision Curves for Time Collection

Figures 2 and 3 show Recall-Precision curves for our trials. We compared them against a well known technique - Latent Semantic Indexing (LSI) [4]. LSI is also based on term co-occurrences. The process involves applying a factor analysis to a term-by-document matrix. Our results were superior to LSI's using the TF-IDF weighting scheme.

[image: image4.png]Precision

07
06
05
04
03
02
01
00

00010203 04 050607 0809 10
Recall

—e—comprand
—=—comp-sorted
—a—corrrand
—ecorr-sorted

—— LSl Fid)

Figure 3 Recall-Precision Curves for Cranfield Collection

5. Discussion

The previous two sections have shown that CA networks can be used for real world tasks, but what implications does this work have? Firstly, how does it reflect on CAs and mammalian neural processing? Secondly, how might CA networks be extended to become better categorisers and better IR systems?

5.1 Implications from CA networks

On the positive side, this work shows that the basic underlying neural and learning mechanisms of our CA networks are very powerful. In these experiments, our Hebbian mechanisms allow us to learn tens of thousands of complex relationships in a very short time.

The learning mechanism is flexible using both unsupervised learning as in the IR case, and semi-supervised learning in the categorisation case. We have also used a compensatory learning rule. Information theoretically, this is almost the same as TF-IDF. Weak neurons directly map to words that occur infrequently, while strong neurons to those that occur frequently. The compensatory rule strengthens weak neurons, and weakens strong ones. TF-IDF strengthens infrequent words, and weakens frequent words. We do not really understand how the Hebbian learning rule is implemented in mammalian neurology, and our IR experiment provides computational support for the use of this rule.

On the negative side, we have not really made use of CAs in this work. CAs are reverberating circuits of neurons. If we used CAs in, for example, testing in the IR experiment, we would have presented the query, and allowed the system to run on for dozens or even hundreds of cycles. If we did this with the current networks, thousands or even all of the neurons would come on, and all of the queries would have the same result. In a more sophisticated system with for instance inhibitory neurons, there would ideally have been hundreds of CAs that could have been retrieved. Since we did not do this, it is clear that we do not have a thorough understanding of how to form these CA stable states. The attractor dynamics that form complex CAs are something we need to learn more about.

Obviously, one type of future work is to use real CAs. This might also enable us to automatically select the documents in the IR task as we do in the categorisation task without the need for Pearson's measurements.

5.2 CA networks for categorisation

In the categorisation section (see section 3), we pointed out some of the strengths of our categorisation method. It handles missing data easily, it can easily be changed to guess any feature, and it shows confidence in the decision. Additionally, it could easily work for a large number of categories despite our categorisation experiment using only two.

The sceptic might point out that our categorisation task was an easy problem, or at least particularly appropriate to our system. Indeed it was. It used categories that were based on probabilistic features. The categories were widely separated by those features.

This system has difficulties with traditional problems like overlapping categories. For instance, if there were two types of Democrats and one of the types was very similar to the Republicans, the system's performance would decrease. Perhaps the use of full CAs would solve this, but this is merely speculation. None the less there is scope for further exploration of CA networks for categorisation.

5.3 CA networks for Information Retrieval

We are quite pleased with the positive results of the IR experiments. We have made minor adjustments to the basic neural model, and the results are comparable to existing IR work. Training is rapid; we have trained on the 1400 document Cranfield corpus using 3600 neurons in less than 15 minutes on a low end PC. Somewhat worryingly retrieval is rather slow because we must do all of the Pearson's comparisons; however, it still takes under a minute.

Clearly this work is only exploratory and there are many more questions to explore. We would like to consider how the number of neurons activated depends on the number of terms in the query. While some queries with a small number of terms activate more neurons than queries with a larger number, generally, more terms will lead to more neurons being active. Perhaps using full CAs, or even just inhibitory neurons might change this.

We would like to consider how to scale to deal with larger collections. The above initial experiments have been carried out using small test collections. We intend to perform experiments with larger sets of data. In order to do that we need to optimise our matching algorithms to reduce processing time.

We would also like to consider how to implement different weighting schemes. IR research has shown that the weighting scheme has a great impact on the system's performance [5]. At the moment our system simulates a kind of TF-IDF weighting, we aim at experimenting with other techniques.

Finally, we would like to consider different similarity measures. For the experiments described in this paper, we used Pearson's correlation to assess the similarity between queries and documents. We are not certain that this is the best measure and intend to try other alternatives such as the widely used cosine correlation.

6. Conclusion

Our CA network was designed to model the computationally important aspects of mammalian neural processing. We know that human neural processing is complex but it is also more effective than any other existing computational system. CA networks are a model of human neural processing that are based on simple neurons that are connected by synapses that learn via Hebbian learning.

This parallel learning and knowledge representation mechanism is extremely powerful. It allows us to easily implement systems for two disparate tasks. Our experiments have shown that a CA network performs near the state of the art on our categorisation and IR experiments. The ease with which we developed these systems from the basic CA network model implies that the model should be usable for a wide range of tasks.

This paper is a two fold example of how neuro-biology and computational theory can aid each other. Our neurally inspired model helps us perform real tasks improving our understanding of computational theory. Neuro-biology can not entirely explain the nature of the Hebbian learning rule. The computationally motivated TF-IDF measurement lends support for the compensatory learning rule as a Hebbian learning rule that the brain should use.

The CA network model is powerful, but we need a better understanding of it. We can use real world tasks like categorisation and IR to explore this model, we can continue our work with neural and cognitive simulations, and we can look at neurobiology and psychology. All of these things can improve the model. As we have shown in this paper, the model can also be used to solve real world tasks.

Acknowledgements:

This work was supported by EPSRC grant GR/R13975/01.

Bibliography

1. Blake, C., and C. Merz. (1998). UCI Repository of machine learning databases http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA. University of California, Department of Information and Computer Science.

2. Bratenberg, V. (1989) Some Arguments for a Theory of Cell Assemblies in the Cerebral Cortex. In Neural Connections, Mental Computation Nadel, Cooper, Culicover and Harnish eds. MIT Press.

3. Crouch, C. (1988) A Cluster-Based Approach to Thesaurus Construction. In ACM SIGIR, Grenoble, France.

4. Deerwester, S., S. Dumais, G. Furnas, T. Landauer and R. Harshman, R. (1990) Indexing by Latent Semantic Analysis. In Journal of the American Society for Information Science,41(6):1-13

5. Dumais, S. (1991) Improving the Retrieval of Information from External Sources. In Behaviour Research Methods, Instruments & Computers 23(2) pp. 229-36.

6. Hebb, D.O. (1949) The Organization of Behavior. John Wiley and Sons, New York.

7. Hetherington, P., and M. Shapiro. (1993) Simulating Hebb cell assemblies: the necessity for partitioned dendritic trees and a post-net-pre LTD rule. Network: Computation in Neural Systems 4:135-153

8. Huyck, C. (2002) Overlapping Cell Assemblies from Correlators. In Neurocomputing Letters
9. Huyck, C. (2002) Cell Assemblies and Neural Network Theory: From Correlators to Cell Assemblies. Middlesex University Technical Report ISSN 1462-0871 CS-02-02

10. Ivancich, J. E., C. Huyck and S. Kaplan. (1999) Cell Assemblies as Building Blocks of Larger Cognitive Structures. In Behaviour and Brain Science. Cambridge University Press

11. Lesk, M. E. (1969) Word-word Associations in Document Retrieval. In American Documentation 20(2) 119-48.

12. Porter, M. (1980) An Algorithm for Suffix Stripping. In Program 14(3) pp. 130-7.

13. Sakurai, Y. (1998) The search for cell assemblies in the working brain. In Behavioural Brain Research 91 pp. 1-13.

14. Schlimmer, J. (1987) Concept acquisition through representational adjustment. Doctoral dissertation, Department of Information and Computer Science, University of California, Irvine, CA. As reported by [15].

15. SMART English Stoplist (2003) http://www.cs.utk.edu/~lsi/corpa.html

18

_1117974638.unknown

