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Abstract

Variable binding is a difficult problem for neural networks. Two
new mechanisms for binding by synaptic change are presented, and in
both, bindings are erased and can be reused. The first is based on the
commonly used learning mechanism of permanent change of synaptic
weight, and the second on synaptic change which decays. Both are
biologically motivated models. Simulations of binding on a paired as-
sociation task are shown with the first mechanism succeeding with a
97.5% F-Score, and the second performing perfectly. Further simula-
tions show that binding by decaying synaptic change copes with cross
talk, and can be used for compositional semantics. It can be inferred
that binding by permanent change accounts for these, but it faces the
stability plasticity dilemma. Two other existing binding mechanism,
synchrony and active links, are compatible with these new mechanisms.
All four mechanisms are compared and integrated in a Cell Assembly
theory.
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1 Introduction

Symbol systems have been enormously successful and it has been proposed
that, at least at some level, humans are symbol processors (Newell, 1990).
Whether humans are symbol processors or not, they can effectively use rules,
and symbolic systems, such as ACT (Anderson and Lebiere, 1998), have been
very successful as models of human cognition. This success is probably due
to the rule based or at least rule-like behaviour of humans in a wide range
of tasks such as natural language processing.

Unfortunately, symbolic systems also have problems with brittleness.
(Smolensky, 1987). The symbols are not grounded (Harnad, 1990) and it is
difficult or impossible to learn new symbols that are not just some combi-
nation of existing symbols (Frixione et al., 1989).

These and other problems provided motivation for the rise of connection-
ism, particularly in the 80s. Connectionist systems are particularly good at
learning, and thus may be able to learn new symbols. If the systems learn
from an environment, the newly learned symbols might even have semantic
content grounded in that environment.

However, early connectionist systems were criticized for their inability
to perform symbolic processes (Lindsey, 1988). In particular they were
criticised for their lack of compositional syntax and semantics (Fodor and
Pylyshyn, 1988).

Variable binding offers an answer to these criticisms. A good variable
binding solution allows for the implementation of rules; connectionist primi-
tives can be combined, and variables instantiated as constants. If this can be
done so that the result has compositional syntax and semantics, the criticism
will have been answered.

For a binding mechanism to be functional, it must be able to support a
range of binding behaviours (see section 2.1). Binding by synchrony (Mals-
burg, 1981) is a well explored mechanism that is functional, but it can
only support a limited number of bindings. Similarly, binding by active
links (van der Velde and de Kamps, 2006) has also been explored and is
functional. Both mechanisms are restricted to active bindings, that is, the
bindings must be continuously supported by neural firing, and when that
firing ceases so do the bindings. This may limit the effectiveness of a neural
system, particularly as it relates to composition (see section 6.2).

After some background for reader orientation, binding by synaptic change
is introduced. This comes in two forms, binding by short-term potentiation
(STP) and binding by compensatory long-term potentiation (LTP). Simula-
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tions that indicate these mechanisms are functional are described, in partic-
ular showing bindings can be formed and erased, that bindings can overlap,
that a large number of bindings can be supported simultaneously, and that
they can provide compositional syntax and semantics. It is shown that the
four binding mechanisms, two existing and the two novel synaptic change
mechanisms, are not mutually exclusive, and one system could use all four
mechanisms. Ramifications for memory formation speed and duration are
also explored along with other issues in the discussion and conclusion.

2 Background

Humans behave as if they have compositional syntax and semantics, so if
systems based solely on neural models are to duplicate human behaviour,
they too must exhibit compositional syntax and semantics behaviour. One
way for neural systems to exhibit compositional syntax and semantics is by
variable binding.

A good cognitive model should have compositional syntax and semantics
(Fodor and Pylyshyn, 1988). Standard symbolic cognitive architectures have
this compositionality, but it is more difficult for connectionist models to
exhibit it.

Compositional semantics means that the semantics of a complex thing
includes the semantics of that thing’s constituents. So sentence 1

Pat loves Jody. Sentence 1
includes the semantics of Pat, love, and Jody. Compositional syntax means
that the syntactic structure of complex things affects the underlying seman-
tics. For example, the semantics of sentence 1 is different from the semantics
of sentence 2.

Jody loves Pat. Sentence 2
So the semantics of a sentence must be more than the sum of its parts.

Variable binding can be used to solve these problems in a neural system
by binding the semantics of constituents in a syntax sensitive way. Sentence
1 could be represented by a case frame (Filmore, 1968) for love where the
actor slot is bound to Pat, and the object slot to Jody.

2.1 The Variable Binding Problem

The variable binding problem is a key neural network problem that involves
combining representations. It is also called the binding problem (Malsburg,
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1986), and the dynamic binding problem (Shastri and Aijanagadde, 1993).
Perhaps the simplest variable binding problem is binding the features of

an object. This is required when a new object is presented. If an object is
composed of features, then when an object is presented, its features need
to be bound together. One classic example is the red-square problem. If
the system is presented with two objects, a red-square and a blue-circle, it
can relatively easily activate the internal representation of all four of these
features. The question is, how does the system know which pairs are bound.

A system can use a solution based on existing objects. For example, if
there are two sets of 100 features that can be bound, the problem can be
solved by having 10,000 stored bindings, but this number will grow expo-
nentially with the number of features, and the number of potential com-
binations. This solution is just a form of auto-associative memory that is
open to the problem of exponential growth and thus combinatorial explo-
sion. However, the features being bound into an object do not need to be a
variant of an existing object, but can be a combination that is novel for the
system.

Another example of this problem is binding parts into a whole, such
as binding elements of a square lattice into rows or columns (Usher and
Donnelly, 1998). A third variant of this problem is the what-where problem.
If a system can recognise multiple objects simultaneously and their locations,
how does it know where each thing is and which things are in each location.
This is an example of the above problem; in this case, location is one of the
features, so one variant is the left-square right-circle problem.

Furthermore, unlike the standard associative memory task, binding fea-
tures of an object has the associated difficulty of erasing the binding. After
some time, red and square are no longer bound, and both may be bound
to some other concept, for example red-triangle. This reuse problem is also
a question of binding duration. As long as the binding persists, it can be
used, but once it stops working, it can be reused for a new binding (see
section 2.2). This paper is mainly concerned with bindings that are formed
and then later erased so they can be reused. Figure 1 is an example of this.
Here each box refers to a group of neurons with the outer six boxes referring
to concepts (e.g. Red and Circle) and the center box acting as a binding
node. An initial binding of Red and Square, represented by the solid lines, is
later replaced by the binding of Blue and Circle, represented by the dashed
lines.

Another standard problematic example is filling in frames (Shastri and
Aijanagadde, 1993; Henderson, 1994; Jackendoff, 2002; van der Velde and
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Figure 1: Idealized Binding with Bind Node: Initial Binding of Red and
Square is Later Replaced by Blue Binding with Circle.

de Kamps, 2006). An example of this would be a verb frame (Filmore,
1968). For example the verb move might take an actor, object and location.
In the sentence Pat moved the ball to the door. Pat would be the actor, the
ball the object, and to the door the location. When processing a sentence,
the system would have to fill in the details by binding these objects to these
slots. Perhaps frames are a common task for systems that use variable
binding due to the compositional syntax and semantics problems mentioned
by early critics of connectionist systems (Fodor and Pylyshyn, 1988). Frames
are a flexible knowledge representation format (Schank and Abelson, 1977);
they are a relational structure where data is used to fill in structures with
variables. The basic frames are templates that need to be instantiated, and
reused. Erasing the original’s filler is one mechanism that can enable reuse.
Moreover, if properly implemented, frames give compositional semantics.

Rules are another important case where variable binding is needed.
Firstly, rule based systems are Turing complete (Hopcroft and Ullman,
1979), so a neural implementation of rules would be Turing complete. This
is not particular surprising as others have shown other connectionist sys-
tems to be Turing complete (Siegelmann and Sontag, 1991). Secondly, rules
are widely used as a means of modelling human cognition (Anderson and
Lebiere, 1998; Laird et al., 1987), so rules are important for cognitive mod-
elling. An example rule would be if X gave Y to Z, then Z possesses Y.
Finally, sequences are important and can be implemented by rules and by
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connectionist systems. For example, one system uses dynamic connections
to learn sequences (Feldman, 1982). These learned sequences are then au-
tomatically forgotten by a process of connection weight decay.

Unification is a more complex form of variable binding. This is done by
symbolic systems such as language processing systems (Shieber, 1986) and
logic programming. There are a range of unification approaches, and com-
plex structures such as directed acyclic graphs may be combined (unified).
It is a complex form of pattern matching. This can lead to a case where
a structure may be illegally combined with a subset of itself, known as the
occurs check (Browne and Sun, 1999). Unification in neural systems may
incorporate soft constraints making the system more flexible (Kaplan et al.,
1990; Hofstadter, 1979). For instance, there may be a grammar rule that
combines a noun phrase and a verb phrase and requires that they agree in
number; a soft constraint may allow the same rule to apply, in some circum-
stances, when they do not agree in number, and this rule could be used to
recognise ungrammatical sentences.

A problem that is closely related to variable binding is Hetero-associative
memory, which refers to the association of an input with an output. This
is roughly what Smolensky (Smolensky, 1990) refers to as variable binding,
which differs from the term as used in this paper because hetero-associative
memories are permanent or extremely long-lasting. Perhaps this difference
is the basis of the term dynamic binding. To avoid confusion, in this paper,
variable binding will only refer to the case where a binding can be erased
and reused.

Hetero-associative memory is a common and well understood form of
memory (Willshaw et al., 1969). Here items are combined, and each is linked
to that combination. Presentation of one enables the system to retrieve the
combined representation. Of course restrictions can be placed on the inputs,
and several features may be needed to activate the full set of items (Furber
et al., 2004). Standard neural models can account for this problem using
standard Hebbian learning rules to implement a form of LTP (Gerstner and
van Hemmen, 1992) for permanent synaptic change. However, this work
is not easily extended to associative memories like semantic nets (Quillian,
1967). The problem here is that one memory needs to be associated with
another, yet the two must remain separate. One excellent graph theoretic
approach to this problem deals with biological constraints on connectivity
and activation (Valiant, 2005). Both hetero-associative memory and asso-
ciative memory, though related, are different from variable binding (but see
section 6.3).
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2.2 Properties of Binding Mechanisms

Different binding mechanisms have different properties. This paper proposes
that three properties are particularly important. These properties are:

1. Persistence of binding

2. Number of bindings supported

3. Speed to bind

Others have discussed the number of bindings property (e.g. (van der
Velde and de Kamps, 2006; Shastri, 2006), but persistence of binding and
speed to bind are not typically discussed. This may be due to other work
on binding being almost exclusively based on bindings being supported by
neural firing (see section 6.2).

Persistence of binding has already been mentioned. Hetero-associative
memories (section 2.1), as typically modelled, persists forever. At the other
extreme, binding via synchrony only persists as long as at least one of the
bound items is firing, and binding by active links persists as long as the
binding node is firing. This leaves a wide range of times that a binding
might persist.

The number of bindings supported refers to how many entirely indepen-
dent bindings, or distinct entities, can be supported simultaneously. One
mechanism might be based on reusable binding nodes. Each node might
be used to support one binding, and there are as many bindings as nodes.
Figure 1 has one binding node that can support any of the nine possible
bindings of one colour and one shape. A second, or third, node could be
added to support another. The solution of forming a dedicated binding node
for each possible binding is impractical because it would require an expo-
nential number of nodes, so the nodes must be reusable. So, in the case of
verb frames (Filmore, 1968), each slot of each verb might be a binding node.
The slot fillers could be simple nouns, or they could consist of other verbs, in
for example the case of sentential complements, to allow an arbitrary degree
of complexity. Of course complex noun phrases would also need binding
slots. With active links (van der Velde and de Kamps, 2006) each binding
node is represented by a circuit, and these can be combined to form verb
frames. Binding via synchrony does not use nodes but has a limited number
of bindings that a system can store (see sections 2.4.1 and 6.1).

Finally, time to bind is an important consideration. How long must
items be coactive before they can be bound? Binding via synchrony is very
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Figure 2: Sample Neural Firing Pattern for Red Square and Blue Circle

fast and can occur within tens of ms (Wennekers and Palm, 2000). The
binding via LTP mechanism proposed below (sections 3.1 and 4.2) takes
much longer.

2.3 Cell Assemblies and Learning

A Cell Assembly (CA) is the neural basis of a symbol (Hebb, 1949). A
CA is a subset of neurons that have high mutual synaptic strength enabling
neurons in the CA to persistently fire after external stimulation ceases. In
the simulations discussed in this paper, a small subset of all the neurons
represents a symbol. If many of the neurons in the CA are firing, the symbol
is active.

CAs give a sound answer to the neural representation of two types of
memory, long-term memory and short-term (or working) memory. The fir-
ing of many neurons in a CA is the neural implementation of short-term
memory; this high frequency and persistent firing makes the CA active.

The red-square problem can be restated in terms of CAs. There is a
CA each for red, blue, square and circle. When a red-square and a blue-
circle are presented, all four base CAs are active. Figure 2 is an example
of this problem. In this example, each cell represents a neuron with circles
representing neurons that fire in a given period. The relevant rows are
labelled with all neurons in a row representing the appropriate feature, and
CAs are represented by orthogonal sets of neurons. In this case some, but
not all, of the relevant neurons are firing. Somehow the pairs must be bound,
so that the system can ascertain, for example, the colour of the square, and
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this binding should only persist for a relatively small amount of time.
A CA is formed by a process of synaptic modification, and typically, this

synaptic modification is modelled as a form of LTP and long-term depression
(LTD). CAs are long-term memories with Hebbian learning rules providing
the link between long and short-term memories (Hebb, 1949; O’Neill et al.,
2008). When neurons co-fire, they become more likely to fire together be-
cause their mutual synapses are strengthened (Hebb, 1949), and eventually,
this can lead to the formation of a CA. Hebbian learning is local; it occurs
between two neurons that are connected and takes information based solely
on these neurons. Typically the synaptic weight is increased when both the
pre-synaptic and post-synaptic neurons fire. For all but the simplest forms of
Hebbian learning, there is an associated form of forgetting that is, somewhat
oddly, called anti-Hebbian learning. Here, if one neuron fires and the other
does not, the synaptic weight is decreased (White et al., 1988), preventing
the weight from growing without limit. There is significant biological evi-
dence for Hebbian learning (Miyashita, 1988; Brunel, 1996; Messinger et al.,
2005). Moreover, as this learning is based on pairs of neurons, biological
experiments are relatively simple, so there is good reason to believe that
some sort of Hebbian learning does occur in brains.

None the less, the precise mechanisms that are used by biological systems
are not entirely clear. There are a range of Hebbian learning algorithms that
follow the above definition, but differ from each other; none account for all
biological data, and the biological data is far from complete.

The simplest rule merely increases the synaptic weight when both neu-
rons co-fire. There is no anti-Hebbian rule, and the weight may be clipped
at some value (Sompolinsky, 1987) to prevent it growing without limit.

Timing is also important to learning. The Hebbian rule involves the
firing of neurons at the same time. In a model that uses continuous time,
the same time requires some degree of flexibility. Work on Spike Timing
Dependent Plasticity (Gerstner and Kistler, 2002) adds another dimension
to the complexity of Hebbian rules. In these rules, precise timing dynamics
are important with the order of neural firing affecting whether the change
in synaptic weight is positive or negative.

The interaction between learning and firing leads to a complex dual
dynamics (Hebb, 1949). Once a CA is learned, it is hard to forget because
any activation of it strengthens its intra-CA connections; this is a form of
the stability plasticity dilemma (Carpenter and Grossberg, 1988; Fusi et al.,
2005). Similarly, it is difficult to do anything with a CA until it has formed.

Hebbian learning rules are the most widely accepted model of the mech-
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anism used by the brain to form CAs, the neural basis of concepts. Binding
is not necessarily related to Hebbian learning, but if CAs, once formed, can
be appropriately bound, then the resulting system can have compositional
semantics and syntax. It then remains to ask what mechanisms can be used
to bind CAs together?

2.4 Solutions to the Problem

The mechanism that is most commonly used in neural simulations of variable
binding is synchrony (Malsburg, 1981). A lesser used mechanism is active
links (van der Velde and de Kamps, 2006), and both require neural firing to
maintain the binding.

2.4.1 Binding via Synchrony

Binding via synchrony requires neurons that are bound together to fire to-
gether. So if two neurons are bound, they might fire at times X, X+.2,
X+.5, X +.8, and X+1. For example, the neurons might fire at 0.1, 0.3,
0.6, 0.9 and 1.1; and then repeat the pattern at 1.5, 1.7, 2.0, 2.3 and 2.5.
Of course there is some room for variation, and the binding usually applies
to a much larger number of neurons than two.

A good example of this is SHRUTI, a non-neural connectionist mech-
anism (Shastri and Aijanagadde, 1993). In this model, different sets of
concept nodes are bound together by firing at roughly the same time. Rules
can be instantiated in the nodes, and these can continue to propagate the
bindings to new items. SHRUTI has been used to develop, among other
things, a syntactic parser (Henderson, 1994). Here synchrony is used to
bind slots and fillers. Unfortunately, the system only allows 10 bindings, so
only relatively simple sentences can be processed.

There is significant evidence for synchronous firing in biological neural
systems (Abeles et al., 1993; Bevan and Wilson, 1999; Eckhorn et al., 1988).
Some really convincing evidence that synchronous firing is used for biological
binding is provided by a study that shows how binding is facilitated by a
stimulus that is presented synchronously (Usher and Donnelly, 1998).

There are several simulated neural models of binding via synchrony
(e.g. (Wennekers and Palm, 2000; Bienenstock and Malsburg, 1987)). Net-
works of spiking neurons are used to segment a visual scene into different
objects based on the firing timing of neurons associated with those ob-
jects (Knoblauch and Palm, 2001); a scene with a triangle and a square
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is presented, and neurons associated with the square fire together and the
triangle neurons fire together, but at different times from the square neu-
rons. Spiking neurons are also used to parse simple text (Knoblauch et al.,
2004) using binding via synchrony.

One major problem with binding via synchrony is the number of bindings
that it supports (see section 2.2). The connectionist SHRUTI parser (Hen-
derson, 1994) is limited to 10 bindings, and Shastri and Ajjanagadde suggest
that this limit is about 10 (Shastri and Aijanagadde, 1993). All bound items
must fire in roughly the same pattern, but to handle variations within neural
behaviour, this pattern must be somewhat flexible. Similarly, items that are
bound differently must fire in a different pattern. For example, the neurons
in red and square must fire in roughly the same pattern, while the neurons
in blue must fire in a pattern that is different from red. As these firing pat-
terns must occur in relatively brief time scales (∼ 33 ms), and they must be
relatively flexible, there are only a restricted number of bindings that can
be maintained simultaneously. It is not entirely clear how many bindings
biological neural systems allow, but as more bindings exist, there is an in-
creased likelihood that closely related patterns will coalesce thus incorrectly
combining sets of bound items.

2.4.2 Binding via Active Links

A more recent approach to the binding problem creates active neural circuits
to support the binding (van der Velde and de Kamps, 2006). Both primitives
and binding nodes are represented by neural circuits, similar to CAs. The
binding is selected by active primitives and is maintained by neural firing
in the binding node. Like binding by synchrony, the binding stops once
firing stops in the binding node and stopping the binding circuit erases the
binding. Binding can persist beyond firing in the primitives.

Effective simulations of natural language processing and vision have been
demonstrated. This is a promising mechanism for variable binding. The
active neural circuit solution is similar to an older connectionist solution
called dynamic connections (Feldman, 1982). Dynamic connections are used
to store bindings that are activated by a pair of inputs, and then persist for
a considerable period. The persistence automatically decays allowing the
node to be reused later.
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2.4.3 Binding via LTP

Another option is to bind by changing synaptic weights. An earlier version
of the work presented in this paper used a fatiguing leaky integrate and
fire (fLIF) neural model to implement rules to count from one number to
another (Huyck and Belavkin, 2006). A Hebbian learning rule is used to
change synaptic weights permanently as a form of LTP.

Sougne provides an interesting blend between binding by changing synap-
tic weights and binding by synchrony (Sougne, 2001). The changing synapses
regulate synchrony by modifying delays on connections.

Unfortunately, a general binding solution based on LTP faces the sta-
bility plasticity dilemma (Carpenter and Grossberg, 1988). The dilemma is
how is it possible to add new knowledge without disrupting existing knowl-
edge in a neural net (Lindsey, 1988). With binding, base CAs would need
to be stable, bindings would need to be plastic, and new CAs would still
need to be formed. Thus any system that allowed a LTP based binding to
be erased could have the problem of erasing the base CAs that are being
bound.

2.4.4 Other Connectionist Binding Mechanisms

One standard mechanism is to create a new binding element for each pos-
sible binding. As mentioned earlier (section 2.1), this has the problem of
combinatorial explosion. This combinatorial explosion might be addressed
by use of hierarchically allocated binding nodes (Hadley, 2007) using pre-
specified roles. For natural language parsing, this requires millions of nodes,
but the brain has billions of neurons, so this is plausible.

Another connectionist mechanisms for binding is to merely combine the
bound representations, but this leads to systems that have problems with
compositional syntax. An example is Tensor Product binding (Smolensky,
1990) which forms a type of cross product of the variables that are being
bound.

While some work has been done on binding via synaptic change in neural
systems, most neural binding work has been done using synchronous firing.
Some non-neural connectionist work is relevant to the problem. However,
the possibility of binding via synaptic change is an under-explored area.
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3 Binding via LTP and STP

There is strong evidence that distinct features that co-occur in a particular
object cause synchronous neural firing (Usher and Donnelly, 1998; Abeles
et al., 1993; Eckhorn et al., 1988). While this appears to be solid evidence for
binding via synchrony, it is not conclusive proof. Synchronous firing may
simply be an emergent property of the neural representation of the new
object as it is an emergent property of standard long-term CAs (Wennekers
and Palm, 2000). Assuming there is binding by synchrony, it still has a
problem with capacity and a problem with duration of binding.

It is not entirely clear how many bindings can be maintained by a net-
work at any given time, but each binding must have its own unique pattern
of synchrony (see section 2.4.1). Natural language processing may require
many bindings as do other tasks such as object recognition. Since CAs
cross brain areas (Pulvermuller, 1999), orthogonalizing domains (e.g. vision
and language) is not a viable solution; that is, the brain can not be parti-
tioned into areas where bindings are distinct so that binding frequencies can
simultaneously support multiple distinct bindings.

Also, the synchronous binding only persists as long as the CAs are active.
Once they stop, the binding is lost. While it is not entirely clear how long
memories persist, there is a wide range of times over which a binding might
persist.

Even if binding via synchrony occurs in the brain, this does not mean
that there are not other types of binding. A different mechanism for binding,
as is shown below, is change in synaptic weights. There are at least two
variants of known biological synaptic weight change, LTP and STP.

3.1 Binding via LTP

One possible solution to the binding problem is permanent synaptic change;
biologically this is LTP and LTD. Objects are bound using synaptic weight
change, and these weight changes remain until future learning erases them.

For LTP to be able to solve the variable binding problem, the binding
must be able to be erased. The mechanism then faces the stability plasticity
dilemma (Carpenter and Grossberg, 1988). If the same mechanism is used to
form the initial memories and to do the binding, something else must prevent
the initial memories from being erased when the bindings are erased.
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3.2 Binding via STP

Most simulation work that involves learning relies on LTP. However there
is another type of learning, STP, and there is extensive evidence that STP
occurs in biological neural systems (Hempel et al., 2000; Buonomano, 1999).
It is still a type of Hebbian learning, based on the firing behaviour of the
neurons a synapse connects, so that co-firing increases the synaptic weight.
However, unlike LTP, the change is not permanent.

Some have proposed that STP provides support for LTP (Kaplan et al.,
1991). That is, in the initial stage of CA formation, short term connection
strength adds activation to the nascent CA that supports the co-firing that
provides impetus for LTP. More recently, short term connection strength has
been proposed as another basis of working memory (Fusi, 2008; Mongillo
et al., 2008). This contradicts the basic idea of active CAs as the basis of
working memory, but the two proposals may be compatible.

Another use for STP is for binding. In this case, the base memories are
bound using STP. As the STP is automatically erased, so is the associated
binding. This paper is the first to describe the use of STP in simulations of
binding.

Note that the four binding mechanisms, synchrony, active links, com-
pensatory LTP and STP, are not mutually exclusive. Section 5.4 shows
synchronous firing behaviour alongside binding via LTP and STP, and de-
scribes how all four mechanisms could be combined in a single system.

4 Simulating Binding with LTP and STP

To show that the STP and compensatory LTP binding mechanisms function,
simulations of a simple paired association task, similar to the red-square
problem (section 2.1), are described. These and all the simulations described
in this paper, use the same basic fatiguing leaky integrate and fire neural
model.

4.1 fatiguing LIF model

The neural model that is used for the simulations described in this paper is
an extension of the standard leaky integrate and fire (LIF) model which is in
turn an extension of the integrate and fire model. A similar model (Chacron
et al., 2003) has been shown to account for inter-spike intervals under various
input conditions better than the standard LIF model. The Integrate and
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Fire (IF) model, commonly called the McCulloch Pitts neuron (McCulloch
and Pitts, 1943), has a long standing history and is quite simple. Roughly,
neurons are connected by uni-directional synapses. A neuron integrates
activity from the synapses connected to it, and if the activity surpasses a
threshold, the neuron fires sending activity to the neurons it connects to.
Connections may be excitatory or inhibitory; excitatory connections adding
activity from the post-synaptic neuron and inhibitory connections subtract
activity. Leaky IF (LIF) models are more biologically faithful than simple IF
models (Churchland and Sejnowski, 1992). In the IF model, if a neuron does
not fire, it loses all its activity. In the LIF model, a neuron retains a portion
of that activity making it easier to fire later. Typically, the neuron loses all
its activity when it fires (Maass and Bishop, 2001). All of these models are
less complex and less accurate than Hodgkin Huxley models (Hodgkin and
Huxley, 1952) and other compartmental models (Dayan and Abbott, 2005)
which are extremely faithful to biology, breaking each neuron into several
compartments and modelling interactions on a fine time grain (< 1ms).

The simulator runs in discrete steps with every neuron being modified in
each step, and activity being collected in the next. The network of neurons
can be broken into a series of subnets. Each neuron has two variables asso-
ciated with it, and an array of synapses, and each subnet has four constants
associated with all its neurons.

The two variables associated with each neuron i are fatigue Fi and activa-
tion Ai. As neurons fire, activation is passed to neuron i and is accumulated
in Ai.

The first constant is the firing threshold, θ. A neuron i fires if

Ai − Fi >= θ (1)

If the neuron fires, it loses all its activation. If sufficient activation is pro-
vided from neurons sending spikes to it, it may fire in the next time step.

If a neuron does not fire, some of its activation leaks away. This leak, or
decay, is the second constant D where D > 1. Ignoring external input and
assuming i did not fire at t− 1, activation of neuron i at time t is

At
i = At−1

i /D (2)

When neuron i fires, it sends activation (or inhibition) along its synapses
to other neurons according to the strength of each synapse, so neuron j
receives activation according to synaptic strength wij . The neuron is an
integrator, so it accumulates activity from the synapses connected to it.
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So, given Pj , the prior activation of neuron j, either 0 or equation 2, the
activation at time t + 1 is

At+1
j = Pj +

∑

i∈Vi

wij (3)

where Vi is the set of all neurons that fired at time t.
These equations describe a LIF model (Maass and Bishop, 2001). The

fatigue variable is incremented by the third constant Fc in a cycle when the
neuron fires, and is decremented by the fourth constant Fr in a cycle when
the neuron does not fire. This makes it more difficult for neurons to fire the
longer they are firing. Fatigue is a property of biological neurons (Kaplan
et al., 1991).

The model has a loose link with time in biological neurons. The model
does not incorporate conductance delays or refractory periods, and these
behaviours all happen in under 10 ms., so each given cycle can be considered
to be roughly 10 ms. Consequently, each neuron emits at most one spike per
10 ms. of simulated time, and the timing precision is at most 10ms. This is
a shortcoming of the model, but enables efficient simulation of hundreds of
thousands of neurons on a standard PC.

The model also has some degree of topological faithfulness. The Hopfield
net (Hopfield, 1982) has been a popular system for modelling brain function
(Amit, 1989), but it requires neurons to be well connected and connections
to be bi-directional. Neither constraint is biologically accurate. However,
one key point that these and other attractor nets (e.g. (Rumelhart and
McClelland, 1982; Ackley et al., 1985)) show is that attractor states are
important; an attractor state is where roughly the same neurons and only
those neurons fire in each cycle. This is a key point of CAs (see section 2.3).

The system uses neurons that are either inhibitory or excitatory but
not both. While there is some debate over the biological behaviour, this
follows the strict constraint of Dale’s Law (Eccles, 1986). In the simulations
described in this section, the ratio is 4 excitatory to 1 inhibitory neuron as
is claimed in the mammalian cortex (Braitenberg, 1989).

The connectivity of the network, and subnets is also important. Like
the mammalian brain, excitatory neurons are likely to connect to neurons
that are nearby. The network is broken into a series of rectangular subnets.
As distance is relevant, the topology of each subnet is toroidal (the top is
adjacent to the bottom, and sides are adjacent to each other, like folding
a piece of paper into a donut) to avoid edge problems. In the simulations
described in this section, excitatory neurons also have one long distance

16



axon with several synapses. So a neuron connects to nearby neurons and
to neurons in one other area of the subnet. These connections are assigned
randomly, so each new subnet is extremely unlikely to have the same topol-
ogy as another subnet with the same number of neurons. Equation 4 is used
for connectivity.

r < 1/(N ∗ .8) → connect (4)

It is initially called for each neuron with N (distance) of one for three ad-
jacent neurons. It is subsequently called recursively on all four adjacent
neurons with distance increasing one on each recursive call, and the recur-
sion is stopped at distance 5. r is a random number between 0 and 1. The
long-distance axon uses the same process though starts with distance 2. In-
hibitory neurons are connected randomly within a subnet. This makes it
easier for localized CAs to inhibit each other. There are approximately 60
synapses leaving a neuron to other neurons in the subnet, for both inhibitory
and excitatory neurons.

4.2 Simulating Binding by Compensatory LTP

The first set of simulations being reported in this paper involve binding
via permanent changes of synaptic strength. This involves a compensatory
Hebbian learning mechanism (Huyck, 2004) that makes permanent changes
to increase a synapse’s strength, akin to LTP, and permanent changes that
decrease the strength, akin to LTD. The simulation also makes use of sponta-
neous neural activation, a known biological phenomenon (Amit and Brunel,
1997), to support erasing bindings

The gross topology is shown in figure 3. There are three subnets called
the letter subnet, the number subnet, and the binding subnet. The letter
and number subnets are trained to contain 10 CAs each. Both nets consist
of 1600 neurons and the binding subnet has 400. The binding subnet has
spontaneous neural firing (see below) to enable erasing. As the base subnets
do not have spontaneous firing, their CAs, once learned, are much more
stable.

In addition to the intra-subnet connection, each bind neuron has 15 con-
nections to both the other subnets. The neurons of the base subnets, letter
and number, have 16 connections to the bind subnet and all inter-subnetwork
connections are randomly assigned. The initial weights are initialized to a
number close to 0.
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Figure 3: Topology of Intra-Subnet Connections in the Compensatory LTP
Binding Simulation: each neuron in the base subnets connect to the bind
subnet, and each neuron in the bind subnet connects to the base subnets.

The compensatory learning mechanism is another type of Hebbian learn-
ing. It forces the total synaptic strength leaving a neuron toward the desired
weight, WB. Elsewhere (Huyck, 2007), this learning mechanism has been
used to learn hierarchical categories where categories share neurons. Com-
pensatory learning is biologically plausible because the overall activation a
neuron can emit is limited. Since a neuron is a biological cell, it has limited
resources, and synaptic strength may well be one such resource.

The compensatory rule modifies the correlatory learning rules to include
a goal total synaptic weight WB. Equation 5 is the compensatory increase
rule and Equation 6 is the compensatory decreasing rule; that is, Equation
5 is a Hebbian rule and Equation 6 an anti-Hebbian rule. WB is a constant
which represents the desired total synaptic strength of the pre-synaptic neu-
ron, and Wi is the current total synaptic strength. R is the learning rate,
which is 0.1. P is a constant and must be greater than 1. The larger it
is, the less variance the total synaptic weight has from WB. P , WB and R
are constants associated with a particular subnet. When the two neurons
co-fire there is an increase in synaptic weight corresponding to Equation 5.
If the pre-synaptic neuron fires and the post-synaptic neuron does not fire,
the weight is decreased according to Equation 6.

∆+wij = (1− wij) ∗R ∗ P (WB−Wi) (5)

∆−wij = wij ∗ −R ∗ P (Wi−WB) (6)

Compensatory learning is important in the erasing process described below.
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A summary of the value of the constants used in the first simulation can
be found in table 1. These values were determined by exploration of the
parameter space via simulation. The parameter space, including topology,
is practically infinite. This particular location is almost certainly not op-
timal, but does show solid results. An understanding of the dynamics of
CA activation and formation is essential to select these parameters; this in-
cludes knowledge of various tradeoffs between parameters such as reducing
firing threshold is similar to increasing synaptic strength. To a lesser extent,
biological constraints also help in directing the search. For instance, excita-
tory synaptic weight is in the range of 0 − 1, and it is known that several
neurons are needed to cause another to fire (Abeles, 1991) so the threshold
θ is much greater than that. In one study of anaesthetised guinea pigs,
simulated models accounted for spiking behaviour when decay was roughly
D = 1.25 (Lansky et al., 2006).

Name Symbol Base Net Bind Net
Threshold θ 4 7

Decay D 1.5 5
Fatigue Fc 1.0 1.0

Fatigue Recovery Fr 2.0 2.0
Saturation Base WB 21 28

Compensatory Base P 1.3 1.3

Table 1: Network Constants

During the entire run, there is spontaneous activation in the binding net.
Spontaneous neural firing is a property of biological neurons (Abeles et al.,
1993; Amit and Brunel, 1997; Bevan and Wilson, 1999), and it has been
proposed as a mechanism for weakening and even erasing memories (Huyck
and Bowles, 2004).

In this simulation, some neurons may be spontaneously activated. This
is modelled by the selection of a random number 0 <= r < 1 for each neuron
in each cycle. If the r < 0.03 the neuron is spontaneously active. So, roughly
3% of neurons in the bind subnet fire spontaneously each cycle.

The simulation first learns the base number and letter CAs, then one of
each is randomly selected to be bound. This is a simple paired association
task similar to the task performed in earlier connectionist simulations (Feld-
man, 1982) and those done in psychological experiments (e.g. (Sakai and
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Figure 4: Neurons Firing per Cycle Indicating CA Formation

Miyashita, 1991)). Once bound, the binding is tested, followed by a test for
an unbound letter and number. The binding is then erased by spontaneous
activation; and the tests are rerun. For measurement, this binding, testing,
erasing, and retesting process is repeated 10 times on each of 10 different
networks.

The base CAs are learned by merely presenting components of them.
As both the base nets consist of 1600 neurons, they can be divided into
10 orthogonal CAs of 160 neurons each. 50 randomly selected neurons of
a particular CA are selected and presented for 10 cycles. This is akin to
clamping, but these neurons are given θ ∗ (1 + random) units of activation.
After fatigue has accumulated they may not fire. After the 10 cycles of
activation, the network is allowed to run for 40 more cycles. It is then reset
with all activation and fatigue zeroed. Then a new CA is presented. Each
set of 50 cycles of activation, run-on, and short-term variable resetting is
called an epoch.

Each base CA is presented in a rotation so that all CAs are presented
once every 1000 cycles. The complete training phase is 20000 cycles so that
each base CA is presented 20 times. Note that spontaneous activation in
the bind net continues throughout this time.

Figure 4 shows the CA formation process. A network is created with
synaptic weights near 0. It is then trained, and at the 45th cycle of each
training epoch, the number of neurons in the presented CA is measured.
This is averaged over the presentation of each of the 20 base CAs, and over
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10 networks. The number of neurons outside the desired CA firing was also
measured, but was always zero. This shows a rapid increase in persistence,
neurons firing toward the end of each training epoch, followed by a gradual
increase after the 5000th cycle. Note, the maximum number of neurons that
could be firing is 160, but fewer are firing due to fatigue. By cycle 20000,
the base CAs are quite persistent.

After the training phase, the epoch duration is lengthened to 1000 cycles
for the binding phase. A randomly selected letter CA and a randomly se-
lected number CA are presented simultaneously. In a system that accepted
visual input, both items would be presented simultaneously as in a paired
association task. In this simulation, 50 neurons from both CAs are selected
at random and presented for 10 cycles. As the CAs are already formed,
these almost always persist for the duration of the binding epoch.

As ever, the bind subnet is spontaneously activated during this phase.
Throughout this period the synaptic weights between the subnets gradually
increase. When binding is successful, neurons in the bind subnet fire due to
input from the active number and letter CA. This in turn causes the inter-
subnet synapses to increase. In essence, a new CA is being formed and it
includes neurons from all three subnetworks.

It is crucial that two CAs in the base subnets are simultaneously ac-
tive. This is similar to the mechanism used for node activation by dynamic
connections (Feldman, 1982). Along with the spontaneously active bind
neurons, these base neurons provide sufficient activation to fire some of the
neurons in the bind subnet. Firing these base neurons causes the mutual
synaptic strength between them and the base neurons to increase leading to
further neural firing in the bind subnet. By the end of the binding epoch, a
CA has been formed that includes the binding neurons, and this composite
CA can be reactivated at any time over a significant period of time.

In the second epoch, the bound number is presented, and in the third,
the bound letter is presented. When successful, this leads to activation of
the binding CA and the opposite base CA. This further reinforces the inter-
subnet synaptic strengths, improving the binding.

In the fourth epoch a randomly selected unbound number is presented,
and an unbound letter is presented in the fifth. The correct result here is
that no neurons in the opposite subnetwork fire.

The synaptic strength from the binding subnet that supports the binding
is being reduced during the test unbound phase, but four further epochs of no
base presentation are run to allow the binding to be sufficiently erased. The
synapses from the binding subnet that support the binding move rapidly to-
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ward zero due to the application of compensatory learning rules (Equations
5 and 6) caused by spontaneous firing.

Synapses from the bind subnet to the base subnets are erased during the
period of no presentation. During this period, neurons in the bind subnet
fire, but no neurons in the base subnets fire. Consequently, the weights are
reduced toward 0.

However, the synapses to the bind subnet from the base subnets are not
changed during the testing of unbound items or during the period of no pre-
sentation. Instead, these synapses are reduced by the compensatory learning
mechanism during the next two test epochs (epochs seven and eight).

The synaptic weights from neurons in the base subnets to the bind subnet
do not change between the last binding test, and the first bind retest. Why
then does the presentation of the here to fore bound item not cause the bind
subnet to activate as it had done during the presentation in the second and
third epochs?

Firstly, there are fewer neurons firing in the just bound item. This is due
to the loss of intra-subnet synaptic strength during the binding. Secondly,
there is little initial feedback from the bind node since its neurons no longer
have much synaptic weight to the recently bound item. During this initial
phase, the synaptic weights in the just bound item are changing. The weights
to the bind node are being reduced while the weights within the just bound
item are increasing. There is only a small part of the parameter space where
this difficult task can be solved (see section 4.4).

Finally, there are four tests to assure that the binding has been erased.
The formerly bound number and letter CAs are presented, followed by the
formerly tested unbound number and letter.

For each network, this series of tests was run 10 times. It was run
on a total of 10 networks. When the testing epoch length was 1000 cycles,
192/200 or, 96%, of the binding tests were successful, and 595/600, or 99.2%,
tests of unbound CAs were successful. These measurements can be combined
using a standard F-score (2 ∗Bound ∗Unbound)/(Bound + Unbound). The
F-score is 97.5%.

The length of the binding period is important. Substantial variations
from the binding period of 1000 cycles causes decreased performance. Figure
5 shows this. Performance is best around 1000 cycles, and trails off when it
is shorter or longer.

It is important that the base CAs must be formed and solid before bind-
ing occurs. They need to be solid so that they can fully participate in the
binding process. This solidity is supported by a low firing threshold (θ = 4)
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and a low decay rate (D = 1.5); together these enable rapid recruiting of
new neurons in a few presentations and high activity in the formed CA.

During base training, the binding area should not form a CA. That is,
no single CA should be able to recruit many neurons from the binding area.
Instead, two base CAs are needed to recruit neurons in the binding area.
Consequently, little activity should be retained in the binding area (D = 5),
and it should be difficult to fire a neuron in the binding area (θ = 7). As
the binding area needs to be quickly recruited when two CAs are active, the
total synaptic strength is high (WB = 28) so that the connections to the
other areas and within can be quickly formed. This differentiation between
systems (binding vs. bound) may be supported neurally by different neural
types or neural pathways. It is a hallmark of neural processing, that different
neurons behave differently.

None the less, a similar system could probably be developed with all sub-
nets having similar or even identical parameters. The difference in threshold
could be removed with a corresponding change in synaptic weights. The to-
tal synaptic strength would see a corresponding reduction, though it would
still be different between subnets. This could probably be compensated by
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changing the number of neurons. Changing the decay rate would be more
difficult because the bind subnet can not retain much activity. A plausi-
ble solution would be to include an inhibitory system for the subnet that
would inhibit neurons in the bind subnet on each cycle and thus eliminate
the effect of a small amount of activity over many cycles. This has not been
implemented, but it is likely that such a system could be developed.

This simulation fits into a rather small part of the parameter space. This
is largely due to the rather precise way that the synapses from the base CAs
to the binding subnet are erased. There is no spontaneous activation in the
base subnets so the connections remain the same during the erase epochs.
However, during the binding epoch, the synapses between neurons in the
base CAs being bound have their strength taken by the synapses to the
binding net. The loss of the feedback from the binding net after the erase
epochs is enough to prevent the activation of the binding net when the bound
base CA ignites.

Since this is so precise, minor changes to parameters cause a rapid
decrease in performance. Changing the number of synapses from each
base neuron to the bind neurons from 16 to 15 gives Bound/Unbound/F-
Score results of 87%/95.5%/91.1%, and changing the number from 16 to 17
gives B/U/F results of 78.5%/94.8%/85.9%. Similarly, changing the base
nets’ desired total synaptic strength (WB) from 21 to 20 gives B/U/F re-
sults of 45%/99.2%/61.9%, and changing it from 21 to 22 gives results of
80.5%/89.8%/84.9%. Changing parameters individually is a form of gradi-
ent descent search; while gradient descent is not the best way to find an
optimal place in the space, it can help to find local minima.

This is a particularly difficult binding simulation because there is no
spontaneous activation in the base nets to facilitate erasing the binding.
However, the lack of this spontaneous activation allows those CAs to persist
indefinitely. Additionally, binding still works quite effectively.

4.3 Simulating Binding by Short-Term Potentiation

Another option to implement variable binding by synaptic modification is
to change the basic mechanism of synaptic change. LTP and LTD require
the synaptic weight to remain unchanged until there is another application
of one of the rules. Since synaptic change is caused by neural firing, the
synaptic weights will remain unchanged until the appropriate neurons fire.

Another option is to have the weights automatically revert to zero over
time. A rule that did this would be akin to STP. Note that the rule is still
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Hebbian in nature, changing the synaptic weight based solely on the firing
behaviour of the two neurons that a synapse connects, but in this case, the
weight also changes toward 0 when there is no firing.

The binding via STP simulations reported below are identical to the
binding via compensatory LTP simulations (section 4.2) except the bind
subnet is removed, neurons are replaced by neurons that learn via both
LTP and STP, and the binding epochs are 50 cycles. The bind subnet
was provided to localise erasing of bindings; with STP the bindings are
automatically erased at the neural level.

For STP, the simulation uses a new type of model neuron, termed a fast-
bind neuron. The basic properties remain the same (see section 4.1), but
some of the synapses leaving these neurons change their weights based on a
different mechanism that accounts for STP.

The learning rule for fast-bind synapses that was used in these simula-
tions is the simplest type of Hebbian learning. For each fast-bind synapse, if
the pre-synaptic neuron fires in the same cycle as the post-synaptic neuron,
the strength increases by the learning constant, which is 0.1. The weight is
clipped at 1.

The rule for reducing synaptic weight is equally simple. If the neuron
does not fire in a cycle, all fast-bind synapses leaving it have their weight
decreased by a constant k (in this case k = 0.004 which was selected to
assure the binding persisted for roughly 250 cycles after last use). So, a
maximally weighted synapse, will return to 0 after 250 cycles of inactivity.
Similarly, a minimally weighted synapse will go to 1 after 10 cycles of pre
and post-synaptic co-firing.

The topology of the number and letter subnets is the same as in the LTP
simulations, with 80% excitatory and 20% inhibitory, and inhibitory neurons
have no fast-bind synapses. Each neuron has two fast-bind synapses to
neurons in each CA in the opposite subnet, and those neurons are randomly
selected.

The constants of the letter and number nets are the same as those in
the LTP experiment; these are shown in Table 1. The training length is the
same, 20,000 cycles, and the procedure is the same. The testing patterns are
the same: binding epoch, two bind test epochs, two unbound test epochs,
four epochs with no presentation, then two more tests of the formerly bound
CAs, and two tests of the unbound CAs.

When the epoch lengths are 50 cycles, the system performs perfectly over
10 bindings on each of 10 nets. That is, all 100 bindings were successful, and
all associated 100 erasings were successful. The Bound/Unbound/F-Score
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results are 100%/100%/100%. The bindings only need 10 cycles to be fully
established, and as they are given 50, they are firmly established. Similarly,
only 250 cycles are needed for the bindings to be fully erased. As there
are two unbound test epochs, and four non-presentation epochs after the
binding, there are 300 cycles of erasing, so erasing is also perfect.

4.4 Performance of LTP vs. STP

It has been significantly simpler to use binding by STP than to use binding
by compensatory LTP. The portion of the parameter space that has been
explored, where binding via compensatory LTP functions acceptably, is quite
small. This has required the use of relatively precise topologies, precise
training and use regimes, and spontaneous activation has been used only in
the Bind subnet to support erasing. On the other hand, binding by STP
works in a much larger range of conditions, and no exploration was done
as the parameters for the LTP experiment were used. The manipulation
of learning and forgetting weights allows for a corresponding manipulation
of bind and unbind times (see section 5.2). Consequently, the next section
discusses simulations using binding by STP to account for crosstalk and
compositionality.

Compensatory LTP should be able to account for these phenomena, but
complex training regimes may be needed, so at this juncture it seems unwise
to describe further LTP simulations. The basic problem with binding by
compensatory LTP along with erasing by spontaneous activation is that it
faces the stability plasticity dilemma. Some memories are stable, the items
being bound, and some are not, the bindings. It is difficult for the same
mechanism to account for both. Formation of bindings is slow and they
persist for a long time, just like CAs, so it may be better to view binding by
compensatory LTP as a form of associative memory. However, this provides
a new way of addressing the stability plasticity dilemma that is more fully
discussed in section 6.3.

The above simulations use fLIF neurons, but binding by compensatory
LTP and STP should both be applicable to other neural systems. Spik-
ing models are particularly appropriate (e.g. (Maass and Bishop, 2001)).
The rules may force breaking of the constraints of some attractor nets (e.g.
Hopfield Net connections would no longer be bidirectional), but this is not
incompatible from a simulation perspective (Amit, 1989). Continuous value
output neural models (e.g. (Rumelhart and McClelland, 1982)) should also
be compatible with binding via STP. It is not entirely clear how spontaneous
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activation would be implemented in these models, but compensatory learn-
ing should still work. It is also not clear how these mechanisms would apply
to connectionist systems that do not have a close relationship to biological
neurons like Multi-Layer Perceptrons (Rumelhart and McClelland, 1986).

The binding by compensatory LTP and binding by STP models that are
presented in this paper are examples of classes of learning algorithms. The
compensatory LTP mechanism was chosen because a compensatory mecha-
nism eases recruitment of new neurons to a CA, binding, and supports eras-
ing. The STP mechanism was chosen because of its simplicity. Ultimately,
it is hoped that the neurobiological basis of neural learning will be suffi-
ciently illuminated to say which algorithms are used for memory formation
and variable binding in the biological system. Until then, an exploration
of different binding algorithms and their use in large systems to simulate
complex behaviour may be a good way to explore alternative neural binding
mechanisms.

5 Further Evaluation of Binding by STP

In the binding by compensatory LTP simulation (section 4.2), a binding node
was used. In the STP simulation (section 4.3) no explicit binding node was
used, but implicitly, each CA was a binding node so that 20 bindings could
be supported. This required that each CA was connected to each CA in the
opposite subnet, and this would require a geometric growth in synapses as
the number of base CAs grew linearly. The use of binding nodes can make
growth of synapses grow linearly as the base CAs grow linearly with each
base CA connecting to the binding node. Of course, it is also possible to
have many binding nodes to support multiple bindings at a given time. How
do multiple bindings interact and how many can be supported?

5.1 Crosstalk

In this section, a system that stores multiple bindings is described. Storing
these bindings could lead to problems of cross talk, but none are seen. The
simulation combines both STP and LTP on a single neuron with specific
synapses devoted to each. The gross topology is similar to that of figure 3,
but in this experiment there are multiple binding nodes.

There are four CAs in the letter subnet, four in number and four in bind.
The letter and number CAs consist of 160 neurons each and the bind CAs
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have 100. All excitatory neurons have synapses leaving them that are mod-
ified by the compensatory LTP rule and synapses that are modified by the
STP rule. The intra-subnet connections are the same as in the experiment
described in section 4.2 and all of these are modified by compensatory LTP.

Each neuron also has connections outside of the subnet and these are
governed by the STP rule. Each neuron in the letter and number subnets
has two connections to a randomly selected neuron in each CA in the bind
subnet, and each of the bind neurons had three connections to each CA in
the other subnets. This means that each neuron received roughly the same
number of fast bind inputs as those in section 4.3.

As in sections 4.2 and 4.3, the base CAs were trained for 20 epochs
of 50 cycles each. This formed stable CAs, and there was no spontaneous
activation. The constants were the same as those for the base subnets in
Table 1 (θ = 4, D = 1.5, Fc = 1.0, Fr = 2.0,WB = 21, and P = 1.3).

Bindings were set by a single epoch of 50 cycles of presentation of one
letter, one bind, and one number CA. Initially this was A0, B1, C2, and D3
each with a unique binding node.

Testing followed immediately with the numbers being presented in order.
At the end of 50 cycles, the net was reset and the next number presented.
On 100 nets, 400 of 400 correct bind and letter CAs fired in cycle 49 and
no other neurons in those subnets fired. As expected, a random one to one
binding (e.g. A1, B2, C3, D0 each with a unique binding node) faired as
well.

This test means that bindings are set and then allowed to be maintained
without activation for 150 cycles. With automatic synaptic reduction set
at 0.004 (k = .004) for each cycle when the pre-synaptic neuron does not
fire, the synaptic weights return to zero after 250 cycles of inactivity. The
simulation is run with a 50 cycle rest after the last binding, for a total of 200
cycles between the last cycle of each binding and each test. On 100 nets,
none of the letter CAs have neurons firing , though 21 of the 400 bind nodes
have some firing. The simulation was run with a 100 cycle rest after the
bindings are set, and indeed the weights have returned to 0 and no firing
was found in the bind and letter subnets.

The bindings are not formed simultaneously. So simultaneous presen-
tation of red-square and blue-circle to the visual channel could not readily
form two separate bindings. An attentional mechanism might be used with
one object being attended to first and bound, followed by the second. Alter-
nately, a different mechanism, e.g. active links, could be used to solve this
problem (see section 5.4).
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One common problem with binding is the presentation of two overlapping
bindings, e.g. a red triangle, and a red square. This has been called the
problem of two (Jackendoff, 2002). This has been solved by a separate
binding node for each pair (van der Velde and de Kamps, 2006); elsewhere,
this binding has been modelled with a computer simulation of CAs (deVries,
2004) to account for psychological evidence.

The simulation was modified so that A0, B1, C0, and D1 were presented,
each with a unique binding node. When the letter was presented the correct
number CA was highly active with no incorrect neurons firing for each of
the 400 presentations on 100 tests. This shows that the binding by STP
addresses the problem of two.

Another test was done by presenting the number. When 0 was presented
either A, C, or both could ignite; and B, D or both could ignite for 1. On 100
runs, when 2 or 3 were presented, no letter neuron fired. Of the 200 positive
tests, both of the bound letter CAs had over 100 neurons fire 158 times,
between 10 and 100 fired in one and the other was over 100 21 times, and in
21 tests fewer than 10 neurons fired in one while the other was near peak.
This means that usually both of the bound CAs ignited, but occasionally,
due to competition, only one did.

As described in section 4.1, each subnet is set up as a competitive sub-
network, with inhibitory neurons that connect randomly within the subnet.
In this case, each inhibitory neuron had 60 synapses. Fewer synapses lead to
less competition, and more synapses to more competition. With 30 synapses
on one hundred runs, both letter CAs fired on each of the 200 tests, though
on two tests less than 100 neurons fired in one CA. With 90 synapses on
100 runs on all 200 tests only one was active and the other had less than
ten neurons firing. Note that an inappropriate neuron was never seen fir-
ing. So, with ambiguous bindings, behaviour is dependent on the extent of
competition.

5.2 Capacity

In some sense, an exploration of the number of bindings that can be si-
multaneously supported by STP is unnecessary. It is obvious that different
orthogonal bindings can be independently supported. For instance, filling
in the topology for figure 1 with values from the simulations of section 5.1
means that each orthogonal binding set can be represented by six base CAs
of 160 neurons, and one binding CA of 100 neurons, or 1060 neurons. So the
brain has a capacity for billions of these orthogonal bindings, though it is
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extremely doubtful that the brain has anything like that many orthogonal
bindings.

Note that orthogonalizing for synchrony is not the same as orthogonal-
izing for STP binding nodes. With STP, CAs can be involved with multiple
bindings simultaneously without being active, and there is no constraint on
how many orthogonal bindings it can be in and be active. With synchrony,
if a CA is in multiple distinct bindings it has to fire in synchrony with all of
them.

None the less it is interesting to see how many potentially overlapping
bindings, as in the experiments in section 5.1, can be held simultaneously.
Using the same method as in section 5.1, one binding can be set at a time,
and parameters can be varied to expand from the four bindings supported
there. For simulations with extra CAs, an equal number of letter, number,
and bind CAs are added. Figure 6 shows a range of behaviour of simula-
tions. The labels in the figure refer to binding weight reduction k and bind
durations with the .004/50 referring to the first simulations of section 5.1
that support four bindings. The other lines refer to different settings of k
and bind durations that allow more bindings to be supported.

Firstly, the synaptic weight reduction parameter k can be reduced from
.004. As it is reduced, bindings will last longer and thus more can be set. In
the .004/50 line of figure 6 the maximum theoretical duration of an inactive
binding is 250 cycles as all of the synaptic weights will have returned to
0. In the simulations, there are two synapses per neuron per CA, so sev-
eral neurons need to be active to cause firing and the bindings will not last
for the full 250 cycles. More synapses would cause this binding to persist
longer, but could still not persist beyond 250 cycles. The .001/50 line repre-
sents a synaptic weight reduction parameter of k = .001. This extends the
maximum duration to 1000 cycles, though again this may not be reached.
Practically, this performs entirely effectively to 650 cycles, and with 50 cycles
to bind, this supports 13 bindings.

Similarly, reducing bind time increases the bindings that can be main-
tained. With a learning weight of .1, 10 cycles are the minimum to fully
bind. The .004/20 line in the figure represents a bind epoch of 20 cycles.
This has the same maximum duration of 250 cycles, but more bindings can
be supported over this time. There is theoretical limit of 10 bindings, but 7
are maintained perfectly.

Reduced bind time and smaller synaptic weight reduction combine mul-
tiplicatively. The .002/20 line in figure 6 theoretically supports 20 bindings,
four times two for the synaptic weight reduction parameter times 50/20 for
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Figure 7: Gross Topology of the Simulation of Binding with Frames. The
Rule subnet inhibits the slots of the Frames that are not active, and the
slots are bound to the appropriate Verbs and Nouns via STP.

the bind time. Practically it is supporting 15 perfectly effectively. A further
set of simulations was run with .001/20 (not shown in figure). This shows
30 bindings being supported perfectly.

There is evidence that STP can last over 30 seconds (Varela et al., 1997),
which is 3000 cycles in the model. With 10 presentations to bind, 300 over-
lapping bindings can theoretically be supported simultaneously following the
above binding setting mechanism.

5.3 Compositionality

The binding by STP mechanism supports frames, and thus supports com-
positional semantics. A simulation based on four subnetworks described in
figure 7 binds successfully over 98% of the time.

The four subnets are the Verb, Noun, Rule, and Frame subnets. The Verb
and Noun subnet consist of three CAs each of 160 neurons each representing
a word; the Rule subnet of five CAs each of 800 neurons each representing
a rule; and the Frame net consists of 14 CAs each of 100 neurons which
represent two frames each of seven slots. The constants were again the
same as those for the base subnets in Table 1 (θ = 4, D = 1.5, Fc = 1.0,
Fr = 2.0,WB = 21, and P = 1.3).

As in the earlier simulations, connectivity within each subnet was dis-
tance biased with 80 to 20 excitatory to inhibitory neurons. In the Frame
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subnet this was extended with synapses that learn via the STP rule. Each
frame consisted of seven slots, so the simulation has two frames. The base
slot was connected to the frame’s other slots, and, as in the simulations from
section 5.1, each of the neurons had two fast bind synapses to each of the ap-
propriate CAs, along with the existing synapses. The sentential complement
slot had fast-bind synapses within the Frame subnet (see below).

Connectivity between the subnets was from the Frame subnet to the
Verb and Noun subnets, represented by the arrows in figure 7; and from
the Rule subnet to the Frame subnet, represented by the dashed line. Each
frame consisted of seven slots: base, base verb, actor, object, location , in-
strument, and sentential complement. The actor, object, and location slots
had connections to each of the nouns, and the base verb slot had connections
to each of the verbs. Each of the excitatory neurons had two synapses to
each of the appropriate CAs, and these synapses are modified by the STP
rule. The sentential complement slot was also connected to the base slot
of the other frame in the same fashion as the other slots were connected to
nouns and verbs. The instrument slot was not used in this simulation.

The rules inhibited the frame slots that were incompatible. Each in-
hibitory neuron had 15 connections to each of those slots, and the rule CAs
had 800 neurons to provide sufficient inhibition to prevent those slots from
igniting even when bound.

As in the earlier simulations the net was trained by 20 presentations of
50 cycles for each of the base CAs. As the rule CAs were 800 neurons, 400
neurons were presented during training instead of 50 for CAs in the other
nets.

The relevant binding parameters are 20 cycles and k = .004. Binding was
done by frames that correlated to the sentences Jody loves Pat., Pat loves
Jody., Pat went to the store., and Jody said Pat went to the store. This was
done by presenting the appropriate rule, slot and filler. For example, the
verb love, the first frame’s base slot, the first frame’s base verb slot, and the
start VP rule were presented for 20 cycles. For the first three sentences this
was three presentations; for Jody loves Pat:

1a the first frame’s base and base verb, verb love, and the start VP rule;
1b the first frame’s base and actor slot, noun Jody, and add actor rule;
1c the first frame’s base and object slot, noun Pat, and add object rule;

The second sentence inverted the actor and object; the third used the verb
go and replaced the object rule and slot with location, and used the noun
store. For the fourth sentence there was seven presentations:

4a the first frame’s base and base verb, verb said, and the start VP rule;
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4b the first frame’s base and actor slot, noun Jody, and add actor rule;
4c the first frame’s base and scomp, and add scomp rule;
4d the first frame’s scomp, second frame’s base, and add scomp rule;
4e the second frame’s base and base verb, verb went and the start VP

rule;
4f the second frame’s base and actor slot, noun Pat, and add actor rule;
4g the second frame’s base and location slot, noun store, and add location

rule.
The complete test was done in three phases. The first phase bound the

slots for Jody loves Pat. into the first frame. There was then a period of
erasing of 250 cycles. The second phase bound the slots for Pat loves Jody.
into the first frame and the slots for Pat went to the store. into the second
frame. There was then another period of erasing followed by the slots for
Jody said Pat went to the store. being bound into the first and second frame.

Testing followed the phases before erasing. Testing was done by present-
ing the base frame slot and the rule. The simulation was run on 10 different
nets and each net did all three phases 10 times. The correct binding was
considered to have occurred if more than 10 neurons in the correct node
were firing in the 19th cycle after presentation; no incorrect binding was
considered to have occurred if no other neuron in the appropriate net fired.
For any given run, there were 14 possible correct bindings, and 13 possi-
ble incorrect bindings (the sentential complement could not have gotten the
wrong base frame as both should be active). All of the correct bindings were
formed and in 1290 of the 1300 runs no incorrect bindings occurred. This
gives a Bound/Unbound/F-Score result of 100%/99.2%/99.6%. Note that
the failures that occurred all occurred within one net toward the end of the
run, and were based on the base frame slot CAs recruiting each other via
LTP.

A sentence is represented by a verb frame that has slots that are dynam-
ically filled. Pat loves Jody. includes the semantics of Pat, love and Jody,
and is different from Jody loves Pat. The simulation shows the difference
between these two sentences and shows that frames can be implemented by
STP. Similarly, the simulation of the semantic representation of Pat went to
the store. shows that extra slots can be added seamlessly, and that multiple
sentences can be stored simultaneously.

The phenomena is recursive. The simulation of the sentence Jody said
Pat went to the store. shows that verb frames can be slot fillers. There is no
theoretical limitation to the depth from a psycholinguistic standpoint. From
a simulation standpoint, reactivation of bindings might be necessary during
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parsing to support the bindings, but section 5.2 shows how 300 bindings
might be stored without recourse to separation.

CAs are associative structures but frames are relational. This difference
is bridged, above, by fast-bind connections. Initially, the frame is repre-
sented by the base slot, and the remaining slots are inactive. As slots are
filled, the base slot and the particular slots are coactive; STP causes them
to be bound so the base slot will activate the bound slots, but not the
unbound slots. In the test, the unbound slots are explicitly activated via
external activation.

A more sophisticated framing mechanism has been used in a natural
language parser (Huyck, 2009). This parser uses frames for both Noun and
Verb Phrases because both can have others as components. Rules no longer
suppress frames, but instead activate particular slots in combination with
existing activation. The parser is stackless and follows other psycholinguistic
models (Lewis and Vasishth, 2005).

When multiple rules are applicable because of simultaneous activation,
competition via inhibition selects the rule to apply. For instance, when
parsing a simple sentence like I saw. two items are active the NP I and the
VP saw. Two rules are also applicable the AddActor rule and the AddObject
rule. The VP is more active since it has been more recently activated, so
the AddActor rule wins and is applied. Once a slot is bound, it is marked
as bound (neurally) and cannot be rebound. In more complex sentences,
several frames can be simultaneously active. In Pat said go to the store
yesterday. The frames VP1 said actor-Pat scomp VP2, VP2 go loc-to-store,
PP1 to-store, and NP3 yesterday are all simultaneously active; the NP1 Pat
frame is inactive since it can no longer be modified. The rule that adds
yesterday as the time of VP1 will activate the appropriate slot in that frame
and the binding will be complete; the other two frames VP2 and PP1 are
already bound. The rule causes the binding, but the binding persists after
the rule ceases firing.

It is fair to note that during parsing of a sentence, multiple constituents
may be simultaneously active. Only the appropriate items must be used
to fill the appropriate slots. Binding by STP has now been used in two
parsers: a stack based parser (Huyck and Fan, 2007), and a memory based
parser (Huyck, 2009). In the stack based parser, the appropriate items are
selected by activating them off of the stack, while other items on the stack
are dormant.

In the memory based parser all active items are active, but binding sites
are activated via rules. The item being bound has particular neurons that
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are associated with it being bound, and these are only activated by the rule.
The slot that is being filled has connections to the neurons for all possible
fillers with synapses that learn via STP. As only one slot and one filler are
activated by a particular rule, only they are bound. So, if a particular PP is
being set as the instrument of a particular verb, the PP’s neurons for being
bound are active while no other filler has those associated neurons active;
the verb’s instrument slot is active and only that slot is active. The binding
is completed, and the PP has a feature (represented by neurons) set that
shows it has been bound. It may still remain active, but will no longer be
used as a filler.

5.4 Combining Binding Mechanisms

Variable binding is a complex problem and is needed for a wide range of
behaviour. Consequently, a system that could use a range of binding mech-
anisms would be more flexible than one that was limited to one mechanism.
Fortunately, all four mechanisms, binding by compensatory LTP, binding
by STP, binding by active links, and binding by synchrony are compatible.

The above binding by STP and by compensatory LTP experiments ex-
hibit synchronous firing behaviour. For example, figure 8 shows the firing
behaviour of neurons in one run of the binding by compensatory LTP sim-
ulation described in section 4.2. This shows a section of one binding epoch.
The x axis shows the number of neurons firing in a subnetwork, and the
y axis shows the cycle. Initially, the number and letter CAs are firing in
different cycles. As the strength of the binding node grows, its neurons fire
more frequently, and all three subnets begin to fire in synchrony; the firing
is so closely correlated that the dotted number line disappears in the figure
as it is covered by the letter line. The number of neurons firing in the base
CAs oscillates, while the number firing in the binding CA oscillates while
growing. This shows a strongly correlated firing pattern between the CAs.

Figure 9 shows that items bound by STP fire synchronously. Here one
letter is bound to one number as in the simulations in section 5.1. The
number is presented which leads to the activation of the bind CA and then
of the letter CA. The firing patterns quickly synchronise.

The above fLIF neural model has been used to implement several systems
including the Cell Assembly roBot version 1 (CABot1) agent (Huyck, 2008).
CABot1 is an agent in a video game that assists the user and is implemented
entirely in fLIF neurons. It consists of vision subnets, planning subnets, an
action subnet, a control subnet, and parsing subnets (Huyck and Fan, 2007).
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The parsing subnets take the user’s commands in natural language and parse
them into semantic frames where the slots are filled via binding by STP. It is
a stack-based system and the stack also binds by STP. The semantic result
then leads to goals being set within the agent. Goals are context dependent,
so a command like Turn toward the pyramid. needs to bind the goal to the
location of the pyramid. This is done dynamically in a fashion similar to
active links.

Similarly, a second parser has been developed that uses binding by STP
for the stack and binding by compensatory LTP to fill the semantic frames.
This indicates that these two variable binding mechanisms can be combined.

Referring back to associative memory (section 2.1), both STP and syn-
chrony have been proposed as mechanisms for supporting associative mem-
ory formation. There has been solid simulation work in the support of
hetero-associative memory formation by synchrony (Shastri, 2002; Gunay
and Maida, 2006). This avoids the stability plasticity dilemma by making
bindings plastic and forgettable and hetero-associative memories permanent.
It has also been proposed that short term connection strength can be used
to support long term memory formation (Kaplan et al., 1991). Finally, there
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have been simulations that show active links also support long term memory
formation (van der Velde and de Kamps, 2006).

6 Discussion

This paper has shown how two mechanisms for binding by synaptic change
function. It has shown that one, STP, is capable of handling cross-talk
and accounting for compositional semantics, and has inferred that the other
mechanism, compensatory LTP, can too. Consequently, these new binding
mechanisms can account for the problems described in section 2.1. Else-
where, it is shown how the earlier binding mechanisms, synchrony (Shastri
and Aijanagadde, 1993) and active links (van der Velde and de Kamps,
2006), can solve these problems.

Since all four binding mechanisms are capable of binding, how do they
differ? Below, each mechanism is evaluated on three important binding
properties.

6.1 Binding Properties

Both binding by compensatory LTP and binding by STP as described in
this paper have values associated with the properties of section 2.2. Table 2
gives a qualitative overview of these values and those associated with binding
by synchrony and by active links. The first column refers to the duration
of the binding, the second to the number of different bindings that can be
supported, and the third to speed to bind.

Persistence Number Speed
Synchrony While Firing Few Fast

Active Links While Firing Large Fast
STP Moderate Large Fast
LTP Long Large Slow

Table 2: Binding Property Values by Method

The persistence of binding for synchrony, and for active links is based
solely on neural firing. With synchrony, the binding persists while the bound
items fire. With active links, the binding persists while the binding node is
firing.
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With binding by STP, the binding lasts as long as there is synaptic
support for it. In the above simulations using binding by STP, synaptic
weights are reduced by .004 each cycle they are not increased. So the weights
are completely erased in 250 cycles, and may be effectively erased in less;
this equates to 2.5 seconds.

The persistence of binding by compensatory LTP is more difficult to
calculate. In section 4.2, 6000 cycles (4 erase epochs and 2 unbound test
epochs) were used to erase the binding, or 60 seconds. Spontaneous ac-
tivation in the bind subnet leads to the connections from the subnet being
erased. However, strong CAs can remain relatively stable under spontaneous
activation due to the relative stability of compensatory LTP. When there is
spontaneous activation of a small number of neurons, there are many more
applications of anti-Hebbian learning than of Hebbian learning. So the total
synaptic weight, Wi, is significantly below the goal weight WB. This means
that application of the anti-Hebbian rule changes the weights very little, and
makes the original weights surprisingly stable.

The number of separate bindings differs between the four binding mech-
anisms. It is not clear how many bindings can be supported by synchrony,
but one simulation sets the limit at 10 (Henderson, 1994). At the other
extreme, binding by compensatory LTP supports a practically unlimited set
of bindings. In the first simulation, there is only one binding, but more
could easily be modelled. Binding by LTP supports a number of bindings
on the order of the number of neurons. (As the number of synapses leaving
a neuron is bounded by a constant, the bits per synapse is constant, and
these represent the memory of the system, memory is limited to O(n) bits
where n is the number of neurons (Shannon, 1948). Repeating the exper-
iment from section 4.2 on orthogonal bindings would give O(n) bindings.)
There is no other practical limit for the number of bindings except perhaps
time to erase. The binding by STP mechanism that was used in the above
simulations also supports a practically unlimited number of binding nodes,
though again time is a factor. Section 5.2 shows that simultaneous support
for 40 bindings is straight forward. Of course, there can be multiple orthog-
onal sets of these bindings with, for instance, colour and object, and verb
and object, being bound. This would lead to a set of bindings on the order
of the number of neurons.

For compensatory LTP, the values regarding time to bind are quite clear.
The fLIF model equates 1 cycle with 10 ms. So, in section 4.2, it takes
roughly 1000 cycles to bind, so roughly 10 seconds.

Compared to this, binding via STP is quite rapid. In the simulations
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in sections 4.3 and 5 the learning rate is set to .1 and the weight is clipped
at 1; so binding happens in 10 cycles, and this equates to times about 100
ms. This contradicts the statement “it is unlikely that there exist mecha-
nisms that support widespread structural changes and growth of new links
within” hundreds of milliseconds (Shastri and Aijanagadde, 1993). There is
biological evidence of STP based on short bursts of spikes that persist for
seconds to minutes (Hempel et al., 2000).

There is a vast range of evidence for synaptic changes of short duration
(see (Zucker and Regehr, 2002) for a review), and there are a wide range of
behaviours, including different behaviours for neurons in different portions
of the brain (Castro-Alamancos and Connors, 1997). Evidence shows that
short term synaptic change can persist from under a second to over 30
(Varela et al., 1997). It has been shown that as few as 10 spikes at 50 Hz
can lead to STP of synapses (Tecuapetla et al., 2007). In the simulations
described in this paper, that would be 10 sets of neural firings in alternating
cycles. For all that is known to the contrary, it is possible that the relevant
form of rapid binding could be implemented by synaptic change. Bursts of
100 Hz firings for as little as 300 ms. leads to STP that endures for tens of
minutes (Schulz and Fitzgibbons, 1997).

It should also be noted that the time courses of the binding by STP and
binding by compensatory LTP are affected by the constants, topologies,
and presentation mechanics. The above simulations provide example time
courses.

Binding by synchrony can occur in tens of ms (Wennekers and Palm,
2000). As active links take only a few neural firings to form a binding, they
too should occur on the order of tens of ms (van der Velde and de Kamps,
2006).

A related property is the number of items per binding. The compen-
satory LTP mechanism limits this, but binding by STP and binding by
synchrony do not. Binding by active links allows the developer to program
this.

6.2 Maintaining Binding by Firing vs. by Synapses

It has been stated that “the number of dynamic bindings expressed via
some form of activity (e.g., synchrony) will be comparable to the number
of ignited (fired) CAs.” If bindings are maintained by neural firing, this is
the case, so it is the case for both binding by synchrony and active links.
However, if binding is done by synaptic modification, CAs do not need to be
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active to remain bound; consequently, synaptic modification allows a much
larger range of bindings to be supported.

If all of the bound items remain active, as in synchrony, or all of the
binding nodes remain active, as in active links, a large number of items are
active. This can lead to problems of crosstalk. These can be addressed
programmatically, but it is clearly useful to be able to deactivate CAs and
retain bindings.

Furthermore, maintaining a binding created by synaptic change, requires
fewer neurons firing, and neural firing is biologically expensive (Attwell and
Laughlin, 2001; Aiello and y Rita, 2002). Maintaining bindings by firing is
thus biologically expensive. It costs a lot of energy.

So, binding by firing may be useful, but it comes at a cost. However,
binding by synaptic change has to pay much less.

6.3 Binding and Memory

The three properties, speed to bind, number of bindings supported, and
speed to unbind are also issues of general memory formation. Recall that
CAs give an explanation for short-term memory (CA activation and persis-
tence) and long-term memory (stable state CA formation based on LTP).
CA activation happens quickly (< 20 ms), but does not last long (seconds).
CAs form more slowly, perhaps over days, but last much longer, perhaps
years. CA activation and CA formation are akin to speed to bind as all
involve a memory formation. The cessation of a CA firing, and the loss of
a stable state are akin to a binding being erased as all involve the loss of
memory.

While there is some debate as to whether memories are lost or not,
it is largely accepted that as time passes, memories become less accessi-
ble (Klatzky, 1980). Figure 10 shows the amount of memory that can be
accessed as time progresses by different neural memory processes. This fig-
ure is meant to be a qualitative guide of the process indicating that as time
passes fewer memories from a particular time can be accessed. At the left
of the figure, CA activation (CAA) does not last long, but in a given period
(say an hour) many memories can be used. On the right, CA formation
(CAF) shows that memories last a long time, but not many things (relative
to the number of CAs accessed) can be stored. Without binding, this leaves
the middle ground empty; how can something be forgotten after only a day?
Binding fills in this middle area. Many items may be bound by synchrony
(BSyn) and by active links; there are fewer than the CAs that are active,
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and they can persist longer as only one of the base CAs is needed to keep the
binding. Binding by STP (BSTP) probably occurs less frequently because it
requires a modification of longer duration, but it persists longer than binding
by neural firing. Finally, binding by compensatory LTP (or any LTP) has
fewer items bound, but persists longer yet. So, over a given hour, 1000 CAs
might activate, 100 sets of CAs might be bound via synchrony, 20 bound
by STP, 10 bound by LTP and two new CAs might be created. The active
CAs would persist for one minute, the synchronous bindings for two, the
bindings by STP for five minutes, the bindings by LTP for two hours, one
new CA might last for a month and the other for 10 years.

These memory mechanisms use and are influenced by the dual dynamics
of CA activation and CA formation. One good example of the complexity
of these dual dynamics is the erasing of the binding by compensatory LTP
in section 4.2. The weights from the bound letter to the bind subnet are
not changed during erasing. When the letter is presented after erasing, the
synaptic weights to the bind subnet are high, but they go down rapidly;
there is a decline because the neurons in the letter CA are firing and the
bind neurons are not, and the decline is rapid because the total synaptic
strength is high. This rapid decline completes the erasing. The dynamics
also have an effect on the stability of existing CAs and formation of new
CAs.

Biological neural systems are always learning (Churchland and Sejnowski,
1992), and there is always spontaneous firing. Under these conditions, CAs
must activate relatively frequently to keep their mutual synaptic strength
high. It does not seem reasonable that all CAs are activated relatively
frequently. The relative stability of compensatory LTP bindings with spon-
taneous activation provides some hope that this problem may be resolved,
but it has not yet been since the system either is stable without spontaneous
activation, or plastic with, but in neither case both.

Binding by synchrony, active links, and STP have a lesser effect on CA
stability and plasticity, but they still have an effect. They have less of
an effect because they are not based on long-term synaptic change. They
still have an effect because they cause the simultaneous firing of neurons in
CAs, and this will lead to increased permanent synaptic weight between the
bound CAs. This might lead to the CAs recruiting each other, so that they
no longer can be independently active.

Binding by compensatory LTP can now be looked at as an associative
memory mechanism. CAs that are frequently bound may become more
related but, perhaps due to topology, may not recruit each other. Other
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options for resolving stability problems include modified spontaneous acti-
vation mechanisms, subassemblies, and learning rules involving fatigue. In
the simulations described in this paper, spontaneous activation is purely
random; this might be modified to make neurons fire when they have not
fired for a long time, and these neurons might co-fire based on their last ac-
tivity. Subassemblies are merely sets of neurons that do not persist, but can
be activated by spontaneous activation leading to synaptic support. Finally,
if synaptic weights only changed significantly when neurons were fatigued,
spontaneous activation would have little effect on them. These mechanisms
are, of course, speculative.

Binding by compensatory LTP, and to a lesser extent the other bind-
ing mechanisms, provides a window into the stability plasticity dilemma of
associative memory. It is relatively easy to model the indefinite storage of
memories as once stored all memories are stable. When the memory store is
large, this may cause no obvious problems. However, access to all memories
can not be retained, and access to psychological memories is lost on a range
of scales. Perhaps binding by compensatory LTP will provide an answer to
how memories can be forgotten after days or years.

7 Conclusion

Binding is an important problem because a solution to it allows a system
to have compositional syntax and semantics. This composition is necessary
for a system to model the full range of human behaviour. If the particular
problems of binding features in an object, frames, and rules can be solved,
then a system can be built that is compositional.

This paper has introduced a new variable binding mechanism, binding by
STP and made use of the relatively novel variable binding by compensatory
LTP. Simulations have shown that these mechanisms, like synchrony and
active links, can bind features in an object, and implement rules and frames.
Simulations have shown that binding by STP also solves the problem of two
and that binding by LTP should be able to.

Binding by STP is fast to bind, persists beyond the activity of the bound
CAs, is relatively easy to engineer, and works consistently. Binding by
compensatory LTP works, but faces the stability plasticity dilemma. It is
slower to bind and the bindings persist longer. Neither of these mechanisms
faces a combinatorial explosion to bind items, and both can support a very
large number of bindings.
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Binding via compensatory LTP and by STP can be used together and
with the earlier defined binding mechanisms, binding via synchrony and
binding by active links, to complement each other. They each have different
behaviours on time to bind, time to erase, and capacity. Along with CA
activation and CA formation, these binding mechanisms give a wide range
of memory formation and retention behaviour.

Together, these mechanisms allow for a sophisticated use of composi-
tional syntax and semantics in a simulated neural system. This will support
the development of complex symbol processing agents from simulated neu-
rons bridging the gap between subsymbolic and symbolic systems.
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