



#### PlaNeural: Spiking Neural Networks that Plan Ian Mitchell, Chris Huyck & Carl Evans Middlesex University, UK

## Aims & Objectives

- Systematic
- Development
- Planning
- Insert into complex agents
- Cell Assembly
- Spiking Neurons
- Maes Networks

Test

- Environment 1
- Environment 2
- Spiking Raster plots
- Results

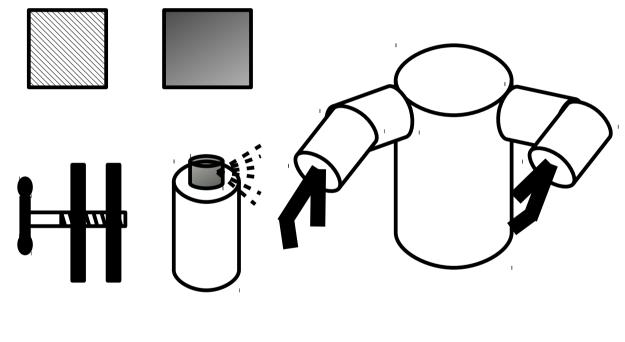
Conclusions

• Future Work



# Introduction

- Cell Assembly
  - Population Cells
- PyNN
- Nest
- Neuralensemble.org
- Spinnaker

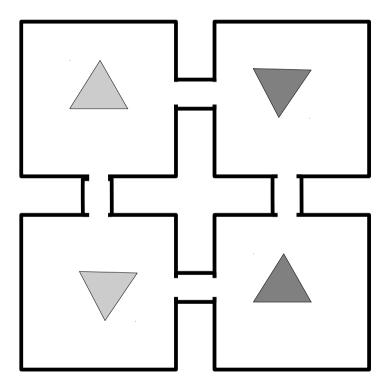



- Planning
  - Static, no learning yet
  - Maes Networks
  - Complex
  - Graphical | Pattern
  - Developing Cell
    Assemblies in a Maes
    Network for planning.

# Environment 1 – Maes network Robot[13]

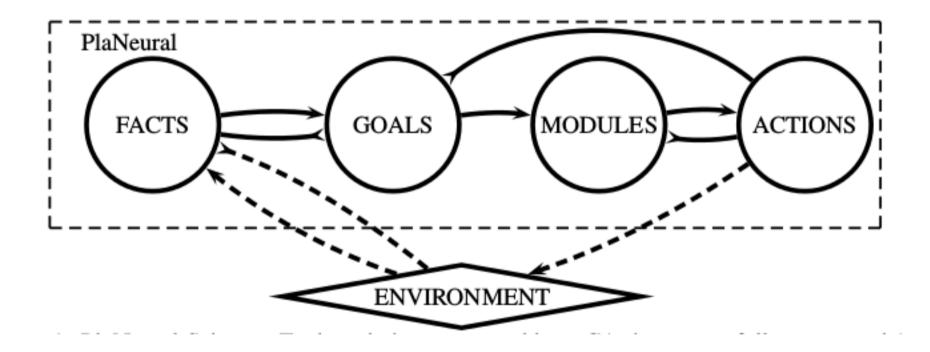


- Robot
  - 2 hands
  - Sand paper
  - Board
  - Spray paint
  - Vice






# Environment 2 – Roaming Agent




- 4 rooms
- Different objects
- Plan is to
  - Identify object
  - Go to door
  - Go to room
  - Explore
  - FW, BW, TR, TL



#### Maes





#### Development for Environment 1



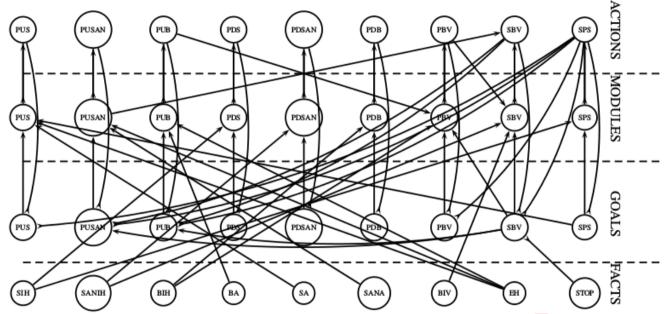



Figure 2: PlaNeural Structure for Robot. Key is referred to Table 1

| Key   | Description      | Key   | Description        | Key   | Description      |
|-------|------------------|-------|--------------------|-------|------------------|
| BA    | Board Available  | PDSAN | Put Down Sander    | BIV   | Board in Vice    |
| SA    | Spray Available  | PDS   | Put Down Spray     | SANIH | Sander in Hand   |
| SANA  | Sander Available | PBV   | Put Board in Vice  | BIH   | Board in Hand    |
| PUS   | Pick up Spray    | SBV   | Sand Board in Vice | SIH   | Spray in Hand    |
| PUSAN | Pick up Sander   | EH    | Empty Hand         | SPS   | Spray Paint Self |
| PUB   | Pick up Board    | STOP  | Stop               | PDB   | Put down Board   |

Table 1: Commands for Maes Robot

#### Development for Environment 2



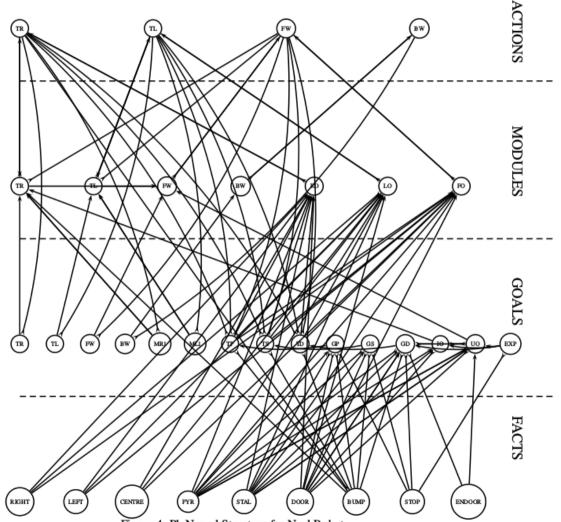
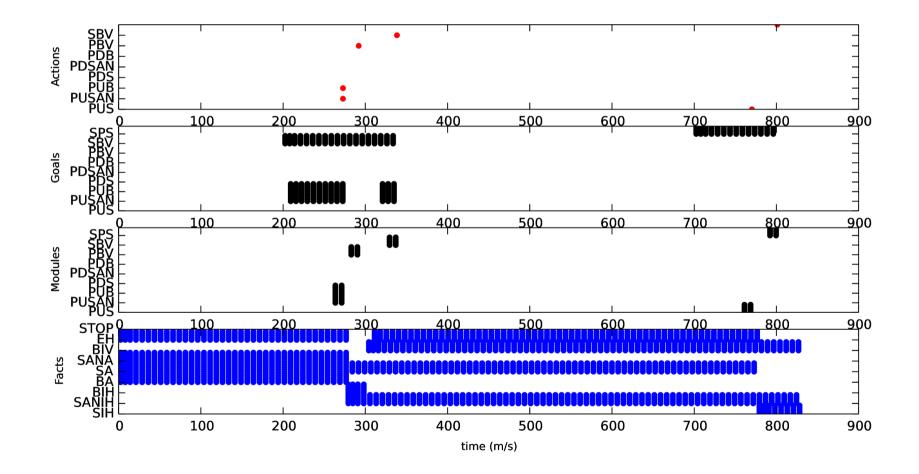
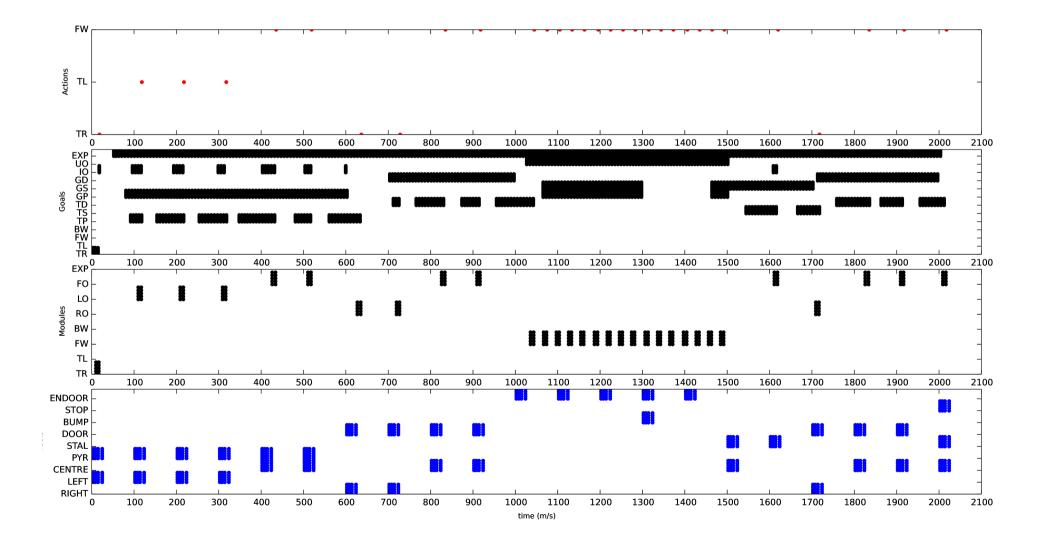




Figure 4: PlaNeural Structure for Neal Robot

© 2016 i.mitchell@mdx.ac.uk


#### **Results for Environment 1**





#### **Results for Environment 2**





#### Conclusions



- 1. Planning with SNN. The topology describes a network that demonstrates the ability to plan in two environments under two different implementations, Nest and Spinnaker, using the concept of Maes-inspired Networks combined with Cell Assemblies.
- 2. Topology: Systematically building a framework for future agents, has been used in NEAL. This systematic approach will improve areas of planning in the development of agents.

# Summary

- Contributions
  - Planning
  - Development
  - Systematic
  - "Spikification"
  - Not visual | logic
  - Planning part of NEAL
    - Neural Embodied
      Agent that Learns



- Results
  - Works in at least 2 environments
  - Maes
  - Robot
- Future
  - Improve complexity
  - NEAL
  - Learning

# Bibliography



[1] Nick Bostrom. Superintelligence: Paths, dangers, strategies. OUP Oxford, 2014.

- [2] R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neu-
- ronal activity. J. Neurophysiol., 94:3637-3642, 2005.
- [3] A. Davison, D. Br uderle, J. Eppler, E. Muller, D. Pecevski, L. Perrinet, and P. Yqer. PyNN: a common
- interface for neuronal network simulators. Frontiers in neuroinformatics, 2, 2008.
- [4] C. Eliasmith, T.C. Stewart, X. Choo, T. Bekolay, Y. Tang T. DeWolf, and D. Rasmussen. A large-scale model
- of the functioning brain. Science, 338:1202–1205, 2012.
- [5] Y. Fan and C. Huyck. Implementation of finite state automata using flif neurons. In IEEE Systems, Man and
- Cybernetics Society, pages 74–78, 2008.
- [6] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown. Overview of the spinnaker
- system architecture. IEEE Transactions on Computers, 62(12):2454–2467, 2013.
- [7] D. Hebb. The Organization of Behavior. John Wiley and Sons, 1949.
- [8] C. Huyck. A psycholinguistic model of natural language parsing implemented in simulated neurons. Cognitive
- Neurodynamics, 3(4):316–330, 2009.
- [9] C. Huyck, R. Belavkin, F. Jamshed, K. Nadh, P. Passmore, E. Byrne, and D.Diaper. CABot3: A simulated
- neural games agent. In 7th Intl Workshop on Neural-Symbolic Learning and Reasoning, NeSYS'11, pages
- 500–544, 2011.
- [10] C. Huyck and I. Mitchell. Post and pre-compensatory Hebbian learning for categorisation. Computational
- Neurodynamics, 8:4:299–311, 2014.
- [11] C. Huyck and P. Passmore. A review of cell assemblies. Biological Cybernetics, 107:3:263–288, 2013.
- [12] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural
- networks, 10(9):1659–1671, 1997.
- [13] P. Maes. How to do the right thing. Connection Science, 1:3:291–323, 1989.

#### BICA 2016