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Abstract

Donald Hebb proposed a hypothesis that specialised groups of neurons, called cell-assemblies (CAs), form the basis for neural
encoding of symbols in the human mind. It is not clear, however, how CAs can be re-used and combined to form new representations
as in classical symbolic systems. We demonstrate that Hebbian learning of synaptic weights alone is not adequate for all tasks, and
that additional meta-control processes should be involved. We describe an earlier proposed architecture (Belavkin & Huyck, 2008)
implementing an adaptive conflict resolution process between CAs, and then evaluate it by modelling the probability matching
phenomenon in a classic two-choice task. The model and its results are discussed in view of mathematical theory of learning and
existing cognitive architectures.
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1. Introduction

There exists a variety of artificial systems and algorithms
for learning and adaptation. Most of them can be classified
as sub-symbolic (e.g. Bayesian and connectionist networks)
or symbolic systems (e.g. rule-based systems). Known natu-
ral learning systems use neural networks, and therefore can be
classified as using sub-symbolic computations. A distinguish-
ing feature of the human mind, however, is the ability to use
rich symbolic representations and language.

From an information-theoretic point of view, symbols are
elements of some finite set that are used to encode discrete
categories of sub-symbolic information. They enable commu-
nication of information about the environment or a complex
problem in a compact form. One obvious benefit is that with
language, one can learn not only from one’s own experience,
but also from experiences of others. The benefits of reading a
guidebook before going abroad are obvious.

The duality between sub-symbolic and symbolic approaches
has been studied in cognitive science. There exist sub-symbolic
(i.e. connectionist), symbolic (e.g. S, Newell, 1990) and
hybrid architectures (e.g. A-, Anderson & Lebiere, 1998)
for cognitive modelling. These different approaches, however,
have not yet explained where the symbols are in the human
mind, or how the brain implements symbolic information pro-
cessing (though see Jilk, Lebiere, O’Reilly & Anderson, 2008).

It was proposed by Hebb (1949) that symbols are repre-
sented in the brain not by individual neurons, but by corre-
lated activities of groups of cells, called cell-assemblies (CAs).
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The Cell-Assemblies robot project (CAB) set out to test and
demonstrate this idea in an engineering task by building an ar-
tificial agent, situated in a virtual environment, capable of com-
plex symbolic processing, and implemented entirely using CAs
of simulated neurons. Some of the objectives have already been
achieved and reported elsewhere (e.g. Huyck & Belavkin, 2006;
Huyck, 2007; Belavkin & Huyck, 2008). The architecture and
some of these works will be discussed in the next section.

The work described in this paper is concerned with a par-
ticular aspect of the project — a stochastic conflict resolution
and meta-control mechanism that modulates Hebbian learning
to allow for re-use and combination of CAs into new repre-
sentations, such as learning logical implications (i.e. procedu-
ral knowledge). As will be discussed in this paper, this can-
not be achieved by using a Hebbian learning mechanism alone.
A unique contribution of this work is evaluation of the meta-
control mechanism in a cognitive model of the probability match-
ing phenomenon in a two-choice experiment (Friedman, Burke,
Cole, Keller, Millward & Estes, 1964). The results suggest that
a proposed mechanism is a plausible model. Some neurophys-
iological studies and hypotheses about the brain circuitry will
be discussed supporting the biological plausibility of the archi-
tecture.

In the next section, we describe briefly the neural model that
is used in our architecture, how simulated neurons form cell as-
semblies and how we use them to test the CA hypothesis of
symbolic processing. Then we discuss the problem of learning
connections between existing CAs. This process is important
for learning new symbolic knowledge by re-using and combin-
ing existing symbolic representations. In particular, we focus
on the problem of learning the correct set of rules from the set
of all possible rules connecting existing antecedents and conse-
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quents. Here we draw the parallel with the A- conflict res-
olution mechanism. Using a mathematical theory of stochastic
learning, we argue that utility (or reinforcement) and stochastic
noise are essential components of this process, and that they are
not included in the Hebbian principle for adaptation of synap-
tic weights. The neural architecture implementing the utility-
based stochastic learning of the connections between CAs is
explained in Section 4, and its performance is demonstrated in
an experiment. Section 5 presents the same architecture sim-
ulating the probability matching phenomenon as observed by
Friedman et al. (1964), and a comparison with the hybrid model
based on the A- architecture is drawn. We then summarise
contributions of this work and discuss its potential future devel-
opment.

2. Cell-Assemblies as the Basis of Symbols

In this section, we outline some of the basic features of the
CAB architecture as well as the CA hypothesis.

2.1. Neural Information Processing in CAB
It is widely accepted that human cognition is the result of

the activity of approximately 1011 neurons in the central ner-
vous system that interact with each other as well as with the out-
side world via the peripheral nervous system. Biological neu-
rons are complex systems, and they have been modelled with
various levels of details (McCulloch & Pitts, 1943; Hodgkin &
Huxley, 1952). In our system, we use fatiguing, leaky, integrate
and fire (fLIF) neurons.

The ‘integrate and fire’ component is based on the classical
idea that the neuron ‘fires’ (or spikes) if its action potential, A,
exceeds a certain threshold value θ:

y =
{

1 if A ≥ θ
0 otherwise

The action potential, A, is a function of the integral (inner prod-
uct) 〈x,w〉 =

∑k
i=1 xi wi of the stimulus (pre-synaptic) vector

x ∈ Rk and the synaptic weight vector w ∈ Rk of the neuron.
Here, Rk is a k-dimensional Euclidean space, where k is the
number of synapses to the neuron. We use binary signals, and
therefore x is a k-dimensional binary vector.

The ‘leaky’ property refers to a more complex (non-linear)
dependency of the action potential on the pre- and post-synaptic
activity:

At+1 =
At

dt
+〈xt,wt〉 , dt =

{
∞ if fired (yt = 1)
d ≥ 1 otherwise (1)

Thus, the action potential is accumulated over several time mo-
ments if the neuron does not fire. Parameter d ≥ 1 allows for
some of this activation to ‘leak’ away. This is the LIF model
(Maas & Bishop, 2001).

The ‘fatigue’ property refers to a dynamic threshold that is
defined as follows:

θt+1 = θt + Ft , Ft =

{
F+ ≥ 0 if fired (yt = 1)
F− < 0 otherwise (2)

where values F+ and F− represent the fatigue and fatigue re-
covery rates. Thus, if a neuron fires at time t, its threshold in-
creases, and it is less likely to fire at time t + 1.

The fatiguing and leaky properties of the neural model al-
low for a non-trivial dynamics of the system. Repetitive stimu-
lation of excitatory synapses increases the probability of a neu-
ron to fire, even if the weights have small (positive) values. On
the other hand, if the neuron fires repetitively, its threshold in-
creases reducing the chance of it firing again. Thus, frequencies
of pre- and post-synaptic activities are important factors in our
system.

The weights of a neuron adapt according to the following
compensatory rule (Huyck, 2007):

∆wi j =

{
α(1 − wi j)eWB−Wi if xt = 1, yt = 1
−αwi jeWi−WB if xt = 1, yt = 0

where α ∈ [0, 1] is the learning rate parameter, WB is a con-
stant representing the average total synaptic strength of the pre-
synaptic neuron, and Wi is the current total synaptic strength
(see Huyck, 2007, for details). Note that absolute values of
the weights wi j here are in the interval [0, 1], and the rule en-
sures that the new weight depends on the correlation between
the pre-synaptic, xt, and the post-synaptic, yt, activities, which
is an implementation of the Hebbian principle.

The above described properties are known characteristics
of biological neurons, and our model is a compromise between
computational efficiency and biological plausibility that is im-
portant for the emerging dynamics that we discuss below.

2.2. Neural Cell-Assemblies
Networks of neurons can be used as general function ap-

proximators and applied in a variety of tasks including con-
trol, pattern recognition and classification. Our system, CAB,
uses recurrent, partially connected networks (a mesh) of fLIF
neurons with a largely pre-defined topology, which is usually
determined by a specific task. For example, CAB was used
to develop an agent situated in a virtual environment, and it
used many sub-systems including simulation of visual cortex,
action-selection and natural language parsing to process text
commands from a user. The non-linearity of the cells and the
topology of the network lead to a complex dynamics of the sys-
tem similar to that in attractor nets (e.g. Hopfield, 1982), where
some of the states are more probable. These more ‘stable’ states
can be characterised by groups of neurons that remain signifi-
cantly more active than the other neurons in the system. Fol-
lowing Hebb, we refer to such reverberating groups of cells as
cell-assemblies (CAs).

In our system, the formation of CAs depends on the topol-
ogy of the network, and it is facilitated by the adaptation of the
weights between connected cells. Therefore, CAs can be used
for pattern classification of sensory stimuli (i.e. patterns from
external connections). This leads to functional specialisation of
neurons in the network based on CAs — two cells are function-
ally different if they belong to different CAs, even though they
are similar architecturally. Such specialisation is observed in
many neural networks, such as in self-organising maps (Koho-
nen, 1982) and particularly in the human brain. Note that CAs
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are not necessarily disjoint sets of cells. A single cell may be a
member of several overlapping CAs. This feature can be used
to encode hierarchies of patterns (Huyck, 2007).

An important property of CAs’ dynamics is their persis-
tence (Kaplan, Sontag & Chown, 1991). When enough neurons
fire to start the reverberating circuit, the CA ignites. Once ig-
nited, the activity within the cells in a CA may be sufficient to
support itself. There are several parameters that influence this
effect in our system. These are parameters of the network topol-
ogy and parameters of the fatiguing and leaky properties of the
cells. The main network topology parameters define the total
number of cells in the network (module), sparsity of the con-
nections, the default connection strength and the likelihood of
a cell being inhibitory. The main parameters of the cells are the
initial activation threshold θ, the decay parameter d controlling
the activation leak in equation (1), the fatigue F+ and recovery
rate F− parameters in the threshold equation (2).

After defining the network topology, the parameters of the
cells can be used to achieve the desired persistence of the CAs
in the network. For example, one can increase or decrease the
recovery parameter F− to achieve longer or shorter persistence.
Table 1 in Section 4 lists the main parameter settings of the four
networks used in the described experiments.

Note also that a CA’s activity does not only depend on the
external patterns, but also on the activity of other CAs in the
system as they can ignite and extinguish each other. Thus, the
activity of several CAs can be characterised by different pat-
terns of ignition order and so on. The ignition of a CA in the
system can be interpreted as an activation of a certain symbol
in the system. It was demonstrated earlier that such state tran-
sitions in the system of CAs are sufficiently controllable to im-
plement a broad range of tasks simulating symbolic processing
that will be discussed below.

2.3. Symbols and Human Cognition

Many models of biological neurons suggest that synaptic
weights may represent the memory for statistical and sub-symbolic
information of the stimulus. In particular, in many algorithms
for training artificial neural networks (e.g. Oja, 1982), the weight
vector w ∈ Rk adapts to one of the principal eigenvectors of
the covariance matrix E{xx†} of the input vectors x ∈ Rk that
have been observed. On the other hand, human cognition, and a
great deal of human knowledge in particular, is encoded using
symbolic representations, and the link between the symbols and
neural models is less clear.

It was proposed by Hebb (1949) that CAs may be consid-
ered as the neural basis of symbols. Indeed, CAs can be easily
mapped to some discrete categories of the stimuli, and their ac-
tivity patterns can model serial processing typical for symbolic
algorithms. Testing this hypothesis experimentally is one of the
main objectives of the CAB project. However, many chal-
lenges had to be overcome to make a purely CA-based system
performing some non-trivial symbol processing task.

Previously, we reported a system performing a counting
task that consisted of 7 modules and 40 CAs (Huyck & Belavkin,
2006). A more recent system, CAB 2, is an artificial agent

functioning in a virtual 3D environment that has a model of vi-
sual information processing, and is capable of natural language
processing and action-selection (Belavkin & Huyck, 2008). One
of the advantages of such a CA-based architecture is that neu-
ral CAs, that we associate with symbolic representations, also
integrate all the sensory (i.e. sub-symbolic) information, which
can be a natural solution to the symbol grounding problem. An
associated phenomenon of symbolic processing is grounding
transfer — combination and re-use of existing symbols to form
new representations (Jamshed & Huyck, 2009).

The re-use of symbols is also important for learning pro-
cedural knowledge. Indeed, a logical implication (i.e. a pro-
duction rule) may use combinations of symbols both in the an-
tecedent and the consequent, and generally there are many more
possible combinations than the number of rules that are actu-
ally used. Hybrid architectures, such as A-, rely on statis-
tical (sub-symbolic) computations to ‘filter’ out the unwanted
rules in the process called conflict resolution. In CAB, as-
sociations between CAs are learnt due to the Hebbian learning
mechanism. However, as will be pointed out below, this mech-
anism alone is not sufficient to implement learning of partic-
ular associations between CAs representing existing symbols.
To resolve this problem, an additional stochastic meta-control
mechanism, moderating the Hebbian learning, has been intro-
duced (Belavkin & Huyck, 2008). Here, we use this mechanism
to model the probability matching in a classical two-choice ex-
periment, and in this way evaluate its plausibility.

3. Learning as Optimisation with Information Constraints

Learning as a process can be understood in different ways,
but learning systems in general can be characterised by some
optimisation criteria and information constraints. The latter
characteristic facilitates the mathematical description and anal-
ysis of learning (Belavkin, 2009, 2010) based on information
value theory, as opposed to a reinforcement learning approach
(Kaelbling et al., 1996; Sutton & Barto, 1998) based on the op-
timal control theory. We begin by describing the problem of op-
timal choice in a two-choice task, which was used in the prob-
ability matching experiments described later. Then we outline
a few theoretical results from the theory of optimisation with
information constraints.

3.1. Two-Choice Task

Let s, a1 and a2 be three symbols, where s represents a stim-
ulus (antecedent), and a1, a2 represent two alternative responses
(consequents). Thus, we have a conflict between two implica-
tions s→ a1 and s→ a2 shown on the diagram below

s

~~~~
~~

~~
~~

  @
@@

@@
@@

@

a1 a2

This is the simplest two-choice task (a more complex two-choice
task may involve a set of different stimuli). The choice of a1 or
a2 is followed by some reinforcement events E that may have
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different utility values (e.g. a success after choosing a1 or a fail-
ure after choosing a2). If the utility values u(s, a) were known,
then one would prefer to choose a1 in presence of s (i.e. prefer-
ring rule s→ a1) if and only if u(s, a2) ≤ u(s, a1). If the positive
reinforcement event is not deterministic, but occurs with proba-
bility P(E) = π ∈ [0, 1], then one can use the expected utility to
choose a1 or a2. This is the maximum expected utility principle,
which is fundamental in theories of games, statistical decisions
and control (von Neumann & Morgenstern, 1944; Wald, 1950;
Bellman, 1957), and it also has been used in the A- conflict
resolution to model properties of human choice behaviour.

If, however, the utility function or the probability distribu-
tion is not known, then one needs to learn them from expe-
rience. As demonstrated in many experiments with animals
and human participants, the frequency of choosing a1 adapts to
the probability π of reinforcement with high utility — a phe-
nomenon referred to as the probability matching. This phe-
nomenon can be explained based on the theories of optimal sta-
tistical decisions and information value (Stratonovich, 1965).

3.2. The Effect of Information Constraints
Let us consider an abstract system with input s ∈ S and

output a ∈ A. Optimisation corresponds to some preference
relation on the input-output pairs (s, a) ∈ S × A. In a deter-
ministic setting, this preference relation can be represented by
a utility function u : S × A → R, while in a stochastic setting,
one considers conditional probability distributions P(u | s, a)
on values of utility u ∈ R. If the utility function u = u(s, a) or
the joint distribution P(u, s, a) is known (and hence P(u | s, a)),
then given input s, the optimal output ā ∈ A maximises the
conditional expected utility:

ā(s) = arg max
a∈A

EP{u | s, a} =
∑

u

u P(u | s, a)


(assuming that the maximum exists). Here, EP{·} denotes the
expected value with respect to probability distribution P. Note
that in the deterministic case, the conditional expected utility
EP{u | s, a} coincides with the utility function u = u(s, a). The
greedy strategy s 7→ ā(s) of always choosing the optimal output
can be expressed by the following conditional probability:

P(a | s) =
{

1 if a = ā(s)
0 otherwise (3)

In learning problems, either the utility function u = u(s, a)
or the distribution P(u, s, a) is not known. Instead, one has some
data from past occurrences of (u, s, a) ∈ R × S × A. This rep-
resents a constraint on information, which can be taken into
account explicitly as part of the optimisation problem: Max-
imise the expected utility subject to the constraint that infor-
mation is not greater than some value I. We shall refer to
the optimal value of the expected utility under the information
constraint as U(I) (called the value of information according
to Stratonovich, 1965). Analytical solution of this optimisa-
tion problem leads to an optimal conditional probability that
is different from the greedy strategy (3) (see Belavkin, 2009,
2010, for details). For an important case, when information is

represented as the Kullback-Leibler divergence (e.g. Kullback,
1959) of posterior distribution P relative to the prior distribu-
tion Q, the optimal conditional distribution belongs to the one-
parameter exponential family (also known as the Gibbs, Boltz-
mann or the ‘soft-max’ distribution):

P(a | s) =
1
Z

Q(a | s) exp{ β ũ(s, a)} (4)

Here, Q(a | s) is the distribution corresponding to the minimum
of information (e.g. no data), β is the inverse ‘temperature’ pa-
rameter related to the amount of information, ũ(s, a) is the em-
pirical estimation of u(s, a), and Z =

∑
A Q(a | s) exp{ β ũ(s, a)}

is defined from the normalisation condition
∑

A P(a | s) = 1.
It is important to note that the temperature parameter β−1

appears in the solution as the Lagrange multiplier related to
the information constraint I. Its optimal value is given by the
derivative of the optimal information value function U(I) com-
puted at I:

β−1 = U′(I) (5)

Analysis shows that the function above is decreasing so that
β−1 → 0 (or β→ ∞) as information increases (Belavkin, 2010),
and the exponential distribution (4) converges to the greedy
strategy (3). However, if information is incomplete, then β < ∞
in distribution (4), and the optimal strategy is randomised.

Exponential distribution is often used for selecting the out-
put of a system in machine learning and stochastic optimisation
algorithms. It is also used in the A- cognitive architecture
to model some stochastic properties of behaviour. In particular,
it was used in the A- model of the two-choice experiment,
discussed below. However, the ‘temperature’ parameter β−1 is
usually set to some constant value or determined from some ar-
bitrary ‘annealing’ schedule. The relation of β−1 to entropy of
success in A- was proposed in (Belavkin, 2003), and it was
shown that it improves the match between the models and data.
The derivation of optimal function β−1 = U′(I) can be found in
(Stratonovich, 1965) and more generally in (Belavkin, 2009).

In the next section, we outline a neural CA-based architec-
ture that uses the described above principles of utility and dy-
namic stochastic noise to learn preferable connections between
existing CAs. This architecture can be used to learn new sym-
bolic knowledge by re-using and combining existing CA-based
symbolic representations. Similar to the A- conflict reso-
lution mechanism, the use of utility and stochastic noise will
allow us to simulate data from a probability matching experi-
ment. An important difference of our neural implementation,
however, is that the level of stochasticity depends on the expe-
rience resembling the antitone relation (5) between the temper-
ature β−1 and the amount of information.

4. Stochastic Meta-Control of Hebbian Learning

The output of a neuron depends on its weight vector w ∈ Rk,
which, according to Hebb’s hypothesis, adapts to the correla-
tion between the pre- and post-synaptic activities in the past. It
is attractive to conclude, therefore, that Hebbian learning is a
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particular implementation of statistical learning. However, the
utility is clearly missing in this description of neural plasticity.
What criteria does such a process of changing the weights op-
timise? If in a two-choice task the system accidentally chooses
the ‘incorrect’ cell-assembly a2, then the weights associating s
with neurons in a2 increase due to the correlation-based Heb-
bian learning. This can only increase the chance of s → a2
igniting in the future, even though the reinforcing event E fol-
lowing the choice of s → a2 has a low utility (i.e. a failure).
Thus, some additional process should be involved to increase
the chance of the ‘correct’ combination s → a1 after the rein-
forcing event E. Such a process appears to be especially use-
ful if the CA-based symbolic representations, formed earlier,
are to be re-used. Below we describe a neural implementation
of such a meta-control of Hebbian learning based on the util-
ity feedback (Belavkin & Huyck, 2008) following principles of
statistical learning.

Value // Explore

��
s1
...

sm

//
//

//

a1
...

an

Figure 1: Components and connections of the Value and Explore modules con-
trolling Hebbian learning of connections between CAs in modules S and A.
Solid and dashed arrows show excitatory and inhibitory connections respec-
tively.

Table 1: Main parameter settings in the four modules used in the simulations.
Module

Parameter Stimuli Responses Value Explore
Cells # 400 400 400 400

Connectivity % 40% 20% 40% 40%
Inhibitory % 20% 20% 30% 35%

Connection strength .02 .02 .02 .02
Spontaneous activation Off Off Off On
Activation threshold θ 4.0 4.0 4.0 4.0

Decay d 1.5 2.0 2.0 2.0
Fatigue F+ 1.0 1.0 1.0 1.0

Recovery F− 2.4 2.2 1.0 1.0
Learning (post-synaptic) On Off Off Off

Learning rate .15

4.1. CA Implementation
The meta-control process involves two specialised modules:

Value and Explore. Their connections in the system are shown
on Figure 1. Here, S = {s1, . . . , sm} and A = {a1, . . . , an} are
sets of CAs representing m stimuli and n responses respectively.
Table 1 shows the main parameter settings for the four modules.

Initially, there are excitatory connections from every CA in
S to all CAs in A, which means that all pairs (s, a) (i.e. all
rules s → a) are equally preferred. Thus, given input s ∈ S ,
any response a ∈ A can be selected. However, due to Hebbian
learning, the connection s → a is reinforced if a particular pair
of CAs ignite together, giving the pair a higher chance to ig-
nite together in the future. Thus, simply by virtue of Hebbian

learning, the system can learn eventually to prefer some ran-
dom pairs. The purpose of the Value and Explore modules is
to make this process selective according to the feedback and its
utility.

The Value module is a network of sparsely, recursively and
randomly connected cells which form a single cell assembly.
In the simulations described below, we used the Value module
with 400 cells. The output activity of the Value module repre-
sents the utility value u associated with the pair (s, a) selected
on the previous step. The input to the module can be configured
according to the application (e.g. using sensory information).

The Explore module has a similar structure and number of
cells to the Value module, but it contains cells that can be active
without any external stimulation due to spontaneous activation.
The purpose of this module is to randomise the activity of the
response CAs (i.e. CAs in set A). The cells in the Explore
module send excitatory signals to all CAs in module A, and the
weights of these connections do not change. Thus, the activity
in the Explore module can randomly trigger any response CA,
and this process does not have a memory. The Explore mod-
ule implements the effect of parameter β−1 in the exponential
distribution.

The Value module sends inhibitory connections to the Ex-
plore module, so that high activity of the Value cells may shut
down the activity in the Explore module. As a result, any re-
sponse CA that has been ignited in module A will persist longer,
because it is less likely to be shut down by another CA. Such
a connectivity implements the following learning scheme: If a
particular pair (s, a) results in a high utility value, then high ac-
tivity of the Value module inhibits the Explore module, the re-
sponsible (s, a) pair is allowed to persist longer, and the s → a
connection increases relative to others due to Hebbian learning.

Learning the ‘correct’ rules (subset R ⊂ S × A) contributes
to better performance of the system (i.e. higher expected util-
ity). As a consequence, the average activity of the Value module
increases with time, which in turn decreases the activity of the
Explore module. This dynamic resembles the decrease of pa-
rameter β−1 as a function of information (5) making the system
less random and more deterministic.

4.2. Performance

The working of the described meta-process has been imple-
mented and tested in our system based on fLIF neurons. Here
we report its performance in a fairly simple experiment of learn-
ing dichotomies. The code of the system and the described be-
low experiment is available at

http://www.cwa.mdx.ac.uk/CABot/CANT.html

In this simple experiment, there are two or four CAs in the
Stimulus module (s1, s2 or s1, . . . , s4) and two CAs in the Re-
sponse module (a1, a2). It is assumed that these CAs corre-
spond to existing representations of stimuli and responses in
the given task. Each module consisted of 400 cells, with 200
cells in each CA. The modules were set up with connections
with low weights from every stimulus CA to all response CAs,
shown by four dashed arrows on the left diagram below. Table 1
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Figure 2: The proportion of correct response (ordinate) as a function of cycles
(abscissa) in a 2 by 2 experiment. Error bars represent standard deviations from
the mean in a series of trials.

lists settings for the main parameters in each module. The task
was to learn two rules, shown by two solid arrows on the right
diagram, by increasing the connection weights.

s1 //___

  A
A

A
A a1

s2 //___

>>}
}

}
}

a2

s1 // a1

s2 // a2

The training procedure consisted of a random presentation
of an input pattern activating one of the stimulus CAs every 100
cycles. It takes on average 10–20 cycles for one of the response
CAs to ignite, which is manifested by the high activity of cells
in the CA. A threshold value can be used in the system to de-
termine that a CA starts to ignite (10% in this simulation). The
selected response is associated with the CA that has the highest
activity. Although there can be an increase of activity in more
than one CA, the inhibitory connections between them ensure
that the CA with the highest activity quickly extinguishes other
CAs.

If the correct response is selected, then the activation of the
Value module inhibits the Explore module after another 10–20
cycles, and the activities of the stimulus and response CAs per-
sist until a new pattern is presented. Otherwise, if an incor-
rect response is selected, the activity from the Explore module
causes another response CA to ignite after approximately an-
other 10–20 cycles.

Figures 2 and 3 show the proportion of the correct response
(vertical axis) as a function of cycle number (horizontal axis) in
a system with two and four input CAs respectively. The charts
show the averaged results of several experiments, and the error
bars show standard deviations. One can see that the system ini-
tially makes only half of the choices correctly. After about 2000
cycles, the proportion of correct choices increases to 70–90%.
Note that the stimulus may change up to 10 times per 1000 cy-
cles (i.e. every 100 cycles). Because the stimulus sequence was
randomly generated in each experiment, there is a variance in
the results represented by error bars on Figure 2 and 3. The in-
crease of the probability of success corresponds to an increase
in the empirical expected utility ũ(s, a) = U.
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Figure 3: The proportion of correct response (ordinate) as a function of cycles
(abscissa) in a 4 by 2 experiment. Error bars represent standard deviations from
the mean in a series of trials.
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Figure 4: Activities of the Value and Explore modules in one experiment.

Figure 4 shows the percentage of neurons firing per cycle in
the Value and the Explore modules in one of the experiments.
One can clearly see that the activities anticorrelate; an increase
in the Value module coincides with the decrease of the Explore
module activity. More significantly, the chart shows that the
average activity of the Value module increases as learning pro-
gresses, while the average activity of the Explore module de-
creases. As expected, this dynamic resembles the decrease of
the noise temperature parameter β−1 as a function of informa-
tion (5).

Because learning of the connections between the correct
pairs of CAs depends on the differences between the times the
‘correct’ and ‘incorrect’ CAs persist in the system, the parame-
ters controlling the dynamics of CAs in the modules may signif-
icantly influence the effect of the meta-process and the ability
of the system to learn. For example, the values of the fatigue
and fatigue recovery rates of the cells influence the persistence
of the CAs as well as how rapidly one CA may extinguish an-
other. Another important parameter is the connectivity of the
cells in the module. The networks in the system are sparsely
connected, and the average number of cells each cell is con-
nected to can also significantly contribute to the behaviour of
the CAs. The learning rate parameter of the Hebbian learning
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rule can also significantly influence the performance of the sys-
tem. If the rate is too high, then association of an incorrect pair
of CAs may occur before the meta-process has its effect. Ta-
ble 1 lists settings of the main parameters in the system that
was used in the experiments reported here.

5. Modelling Probability Matching

To test how adequately the above mechanism can repre-
sent properties of human cognition, we evaluate its performance
against data from a classic two-choice experiment due to Fried-
man et al. (1964). The choice of this dataset was motivated not
only by its quality and detailed description of the procedures,
but also because it was used to ‘calibrate’ stochastic proper-
ties of other cognitive architectures, such as A- (Anderson
& Lebiere, 1998). The complete description of the experiment
and data can be found in the original paper (Friedman et al.,
1964). Here we give a basic outline.
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Figure 5: Frequency of response (ordinates) as a function of the probability of
reinforcing this response (abscissae). Solid line show frequency of the reinforc-
ing event, F(E). Dashed lines show the average response frequencies, F(R), in
48–trials of the participants in Friedman et al. (1964) and of the CAB model
(RMSE=8.937%). The error bars represent standard deviations.

5.1. Experiment Description and Previous Work

In this experiment, participants were asked to select one of
two responses on presentation of a stimulus. After the response
was selected, a reinforcement event E occurred with probability
P(E) = π that did not depend on prior responses. Each partici-
pant had to perform this task in three sessions, each session con-
sisted of 8 blocks, each block consisted of 48 trials. The prob-
ability P(E) = π changed between each 48–trial block. This
paper will report only simulations of results in Sessions 1 and
2. In these two sessions, blocks 1, 3, 5 and 7 had P(E) = .5, and
blocks 2, 4, 6, and 8 were with P(E) ∈ {.1, .2, .3, .4, .6, .7, .8, .9}

that was assigned according to a random pattern. Thus, prob-
ability P(E) = π was alternating between .5 and some value
above or below .5 between 48-trial blocks. The data recorded
the number of times Response 1 was chosen in each 48-trial
block.

Figure 5 shows the results of these experiments, reported
by Friedman et al. (1964). The charts show frequencies of
Response 1, F(R), and reinforcement events, F(E), as func-
tions of the control probability P(E) = π. One can see that
the frequency of the reinforcement event F(E) approximates
the control probability F(E) ≈ P(E). The response frequency
F(R) also matches the probability P(E), but it differs signifi-
cantly at the lower and higher ends of the range: When P(E)
is low (π = .1), the participants overestimate the probability
(F(R) ≥ P(E)); when P(E) is high (π = .9), the participants
underestimate it (F(R) ≤ P(E)). Thus, the response appears to
be less certain than the reinforcing event.

As suggested by Anderson & Lebiere (1998), this experi-
mental evidence indicates against using the greedy strategy (3)
for choosing the response. The data was modelled in A-
by sampling responses from exponential distribution with some
β−1 > 0. This agrees with equations (4) and (5), where β−1 → 0
only when there are no constraints on information. We now
describe a model of this experiment implemented in CAB.

5.2. Model Description
The model used the same architecture, shown in Figure 1,

and the same parameter settings, shown in Table 1, as in the
experiments described earlier. Module S consisted of CAs rep-
resenting one or more stimuli, and module A contained two CAs
representing two alternative responses. Initially, there were ex-
citatory connections with low weights from module S to all
CAs in module A. The weights on these connections, however,
could adapt according to a Hebbian rule increasing associations
s → a between active CAs. The fatigue and leak parameters
of the A network were set in such a way that CAs ignite only
when an external stimulus is present (see Table 1). The CAs in
module A inhibited each other so that only one of the CAs in A
was active at any moment. The Explore module had excitatory
connections with a small proportion of cells in module A. These
connections were distributed uniformly, and the weights did not
adapt. Spontaneous activation in the Explore module could ran-
domly trigger either of the two response CAs in module A. The
activity of the Explore module could be inhibited by the output
activity from the Value module that was triggered in each trial
according to probability P(E) = π of the reinforcement event,
controlled by the experimental sequence.

When the Explore module is inhibited by the reinforcing
activity of the Value module, the active pair (s, a) is allowed
to persist longer, strengthening the connections s → a relative
to other connections. We found that the robustness of this ef-
fect depends on the time (i.e. number of cycles) these CAs are
allowed to persist. In this model, it takes approximately be-
tween 10–20 cycles for a response CA in module A to ignite,
and if the Explore module is active, then the response CA may
change during another 10–20 cycles. In this experiment, the
system ran for 100 cycles per trial which was sufficient for the
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control of learning to have a robust effect. The complete code
of the simulation is available online from the CAB project
website.

5.3. Results

The model was used to simulate Sessions 1 and 2 of eight
48-trial blocks each with variable control probabilities π (Fried-
man et al., 1964). The results comparing response frequency of
the model with the data are shown on Figure 5. The model ap-
proximates the data fairly well (RMSE=8.937%) showing the
probability matching effect that also overestimates and under-
estimates the low and high value of the control probability π
respectively. Note that here we did not change any of the pa-
rameters of the system, such as those shown in Table 1, and
perhaps the model could fit the data better with a different set
of parameter values.

6. Conclusions

In this paper, we discussed the CAB architecture and some
challenges associated with implementing the CA hypothesis of
symbolic processing in the brain. The problem of re-use and
combination of symbols, particularly in learning procedural knowl-
edge, pointed at one significant shortcoming of the standard
Hebbian learning mechanism — adaptation of weights based
purely on correlations does not take into account the optimi-
sation criteria that a system may have to satisfy. To resolve
this problem, stochastic conflict resolution and meta-control of
learning based on utility feedback was introduced into the sys-
tem.

It is attractive to speculate about the existence of the Value
and Explore modules in the brain. Some researchers have pro-
posed that tonically active cholinergic neurons in the basal gan-
glia and striatal complex play an important role in conflict res-
olution and learning procedural knowledge (Granger, 2006).
These neurons account for a small proportion of the connec-
tions that are quite uniform and non-topographic, and the activ-
ity of these neurons was suggested to play the role of stochas-
tic noise, similar to the activity of cells in the Explore module
(see Fig. 1). Interestingly, the activation of the tonically ac-
tive cholinergic neurons is inhibited by the activation from the
reward path, similar to the function of the Value module in our
system. Other studies of mechanisms for exploratory behaviour
in the brain are also in favour of the exponential distribution
model (Daw, O’Doherty, Dayan, Seymour & Dolan, 2006).

Setting these speculations aside, this work has demonstrated
that the proposed mechanism can be used for controlling Heb-
bian learning in networks of relatively biologically faithful mod-
els of neurons. The mechanism allows for selective learning of
connections between specialised groups of cells (CAs), and fol-
lowing Hebb’s hypothesis it shows not only that CAs can indeed
be associated with symbols, but also shows how such represen-
tations can be re-used and combined to learn new knowledge.
Simulation of the probability matching effect has demonstrated
that the mechanism is also a plausible cognitive model of con-
flict resolution. We anticipate that the proposed architecture can

also be used to model other psychological phenomena, such as
the effect of reinforcement values on speed of learning, and this
is one possible direction of our future research.
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