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ABSTRACT
CABot is a novel project to build neuro-cognitive agents.
One aim of the CABot project is to develop agents that col-
laborate with a human user to carry out tasks in a 3D envi-
ronment by means of a natural language conversation. As the
agent is based on human neural and cognitive models, users
may expect human-like collaborative skills from CABot. We
believe that: (a) generations of CABot agents may be artifi-
cially intelligent but may nevertheless lack the full range of
human-like collaborative abilities; and (b) even with human-
level collaborative abilities, collaboration between AI and
human (and AI and AI) will be no less challenging than
collaboration between human and human. Many of these
challenges were foreseen with respect to earlier forms of AI.
CSCW and HCI are likely to inform the solutions to these
challenges as AIs become widespread in collaborative set-
tings.
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INTRODUCTION
“Expert systems’ reliability will, in the end, be strongly de-
termined by the quality of their dialogue with users and the
compatibility between what the user believes the expert sys-
tem knows and what it actually knows.” [8]

Substitute “collaborative, artificially intelligent agents” for
“expert systems” and Diaper’s conclusions of more than twenty
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years ago are equally applicable today. The potential, and
still unsolved, issues concerning how people interact with a
truly intelligent, non-human agent remain.

Now is the right time to ask questions of where our likely
future technological developments, in this case in Artificial
Intelligence (AI), might lead. For example, how they may
help and hinder: individual, organizational, social, political,
economic, ethical and aesthetic desideratum; and just what
might be these, often conflicting, desires?

This paper will discuss several of these concerns, and mo-
tivate them with the example of a novel intelligent agent:
CABot. The Cell Assembly robot (CABot) is a project that
aims to develop intelligent agents that emulate human neuro-
cognitive architecture. CABot1 [17] was an initial prototype,
a first generation intelligent agent that could collaborate with
human users in a virtual 3D environment. It is able to parse
natural language instructions and to act on those instructions
within the virtual world. All the CABot agents are designed
with a commitment to neurophysiological fidelity to the hu-
man brain and functional fidelity to the human mind. As
a result, the agents not only perform in a cognitively human
way, but these neural network systems also perform in a sim-
ilar time to human performance. For example, the CABot2
parser functions in human-like times when parsing natural
language sentences (e.g. [18]).

However, there are still human-like behaviors that completed
CABot agents do not exhibit. For example, neither CABot1
or 2 incorporates a theory of mind, nor do they have a con-
cept of negotiation. Whilst CABot1 and 2 can solve several
interesting linguistic challenges, they do not have a particu-
larly sophisticated approach to pragmatics or argumentation.
Collaboration between humans is challenging, even when
those humans possess these abilities. Collaboration with an
apparently human intelligence that nevertheless lacks these
features is likely to lead to problems ranging from mere frus-
tration to, in safety critical applications, human deaths and
serious injuries.

These concerns are not new, and many of them were fore-
shadowed in early work on expert systems. Expert systems
in the 1980s were defined as being systems that could em-
ulate some aspects of human expert thought and behavior
(e.g. [23]), i.e. they did not have to work like either the hu-
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man brain or mind, but just copy some human behaviors (in
restricted environments).

In contrast, the overall neural and cognitive fidelity approach
of the CABot project aims to create AIs that are human-
like in both form and function. Systems are tested against
human performance and look to match it. As a result, hu-
man users collaborating with these novel AIs might expect
human-level collaborative skills. The unresolved issues of
people and expert systems communication and understand-
ing are even more germane for CABot-like neural agents
than to the old expert systems. This position paper lays
out several of the challenges that the authors foresee as hu-
man agents begin to collaborate with artificially intelligent
agents, or indeed when artificially intelligent agents begin
collaborating among themselves.

THE CELL ASSEMBLY ROBOT
CABot is a project with the long-term goal of building intel-
ligent agents by following human neural and psychological
models. This project has developed several prototype agents
(the major versions are CABot1 and 2), another is currently
under development (CABot3), and others are being planned
(e.g. CABot4). These early systems are built from simu-
lated, artificial fatiguing Leaking Integrate and Fire (fLIF)
neurons that are a model of natural neurons [16].

Cell Assemblies (CAs) [14] emerge from these fLIF neurons
via unsupervised learning, and when ignited, these CAs rep-
resent the content of the agents’ short-term knowledge (e.g.
declarative semantic knowledge) and how it thinks over time
(e.g. learning, rule following, decision making). As in the
human brain, fLIF neurons can be members of more than
one CA and the existing CABots support both specialized
function, corresponding to current models of human neural
functional allocation, and less specialized cognitive compu-
tational capabilities.

The basic CABot architecture is based on current models
from psychophysics and experimental cognitive psychology,
and from linguistics and psycholinguistics. Because of cur-
rent hardware limitations, some of the recent CABot system
demonstrations have been programmed, rather than learnt,
to conform to such models [18]. However, the fLIF neuron-
based, cognitive architecture is able to learn what is pro-
grammed in the CABot agent. This has been tested in other
systems. For example, the CABot2 parser is programmed
to store the semantics of lexical items as overlapping CAs
following the Wordnet hierarchy [22]. Other simulations
demonstrate that these overlapping CAs can be learned to
automatically derive the hierarchies [16].

The CABot1 and 2 systems use a freely available virtual re-
ality environment [1]. The agents are “robots” within the
virtual world, tasked to assist the human user in the envi-
ronment. In the following section, the system is described,
starting with the agent’s inputs from its virtual environment
and from the user. The agent processes such inputs and i)
produces natural language output to the user and ii) operates
within the virtual environment. This is what Anderson [3]

calls end-to-end behaviour.

The CABot agents receive, via JPEG files, visual input from
the virtual world that they inhabit. The user receives the
same view on their screen, from the user’s own perspective.
To interpret this visual input, the agent has a simulated retina
that codes the stimulus as spatial frequencies corresponding
to different receptive field sizes and so provides an output
similar to that sent from the retina of the human eye, via the
optic nerve, to the visual cortex. The 3D visual virtual world
is admittedly very simple but CABot1 and CABot2 can nav-
igate around their world using visual input. Both agents can
recognize objects, and some versions of CABot1 can learn
new shapes. Labels for these new shapes are learnt via in-
teraction with the user. This begins to address the symbol
grounding problem: how do arbitrary mental symbols come
to represent real-world objects [13].

To interact with the agent, the user enters natural language
keyboard inputs (we have not yet attempted to implement
speech) and the CABot2 agent uses semantic, lexical and
parse systems, based on current psychological and linguistic
models, to understand the user inputs. There is some evi-
dence that not only are sentences parsed in a way similar to
how people do it, but that the CABot2 parser performs in
times similar to those that people take when parsing [18].

Current visual information is combined with the processed
language. Together, visual and linguistic inputs are used to
learn new declarative knowledge, or to learn or generate ap-
propriate behavior. The agent can create plans, which while
simple, are not merely a linear means-end analysis. Fur-
thermore, it can generalize its rules to create new behaviors
where necessary.

It is not uncommon for AI researchers to think of building
AI systems as assembling building blocks. The CABot ap-
proach is different in that what it builds are, potentially real-
time, simulations of how the brain is structured and operates
and then shows how, as an agent, it performs cognitive and
linguistic functions in ways similar to how people perform.
Whilst the agent’s environment and tasks are simple at the
moment, two things encourage the belief that this research
will scale-up.

Firstly, because they use similar neural hardware (digitally
simulated fLIF neurons) and similar organization (CAs) to
the human mind, the “building blocks” of CABot are cogni-
tive functions based on models of human cognition. It is not
necessary to build sets of new “building blocks” to enable
new abilities as CABot is autonomous and self organizing.
In addition to the wide range of different types of cognitive
activity CABot has simulated, further cognitive abilities are
possible using the same architecture.

Secondly, CABot is capable of independent, self directed
learning. Present it with a novel visual object, for example,
and the agent can learn to discriminate it from other objects it
has previously learned, and to recognize it later. It can gen-
eralize its learning and categorize new stimuli [16]. Using
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both its visual and its language systems, CABot can ground
its linguistic representation in its visual world by varying
synaptic strength between neurons following a few simple
organizational principles at the CA level of description.

It is proposed that CABot4 will be a conversational agent.
In addition to the behaviors of CABot2 and 3, CABot4 will
also be able to produce natural language text for the user to
read. This should enable a much more sophisticated form
of interaction. CABot is not the first attempt at creating a
cognitive architecture. Other cognitive architectures, such
as ACT-R [2] and Soar [21] could be considered symbolic
AI systems. However, these systems have no fidelity at the
neuron level. In contrast, all computation in CABot is car-
ried out entirely via fLIF neurons of a reasonable biological
fidelity. As a result, CABot is distinct from ACT-R and Soar
in that these fLIF neurons can organize themselves into CAs
that learn a wide range of cognitive functions.

INTERACTING INTELLIGENT AGENTS
Diaper [6], argues that HCI, and therefore CSCW, are pri-
marily engineering disciplines, ultimately being focused on
solving problems concerning people and computers. Both
HCI and CSCW, like cognitive science, KBS and other forms
of AI, are highly interdisciplinary, drawing from, inter alia,
psychology, sociology, philosophy and linguistics, as well
as from computer science. CSCW’s profound contribution
has been to shift the focus of HCI from a computer system’s
single direct end user to how groups of people can work to-
gether using computer systems (groupware).

The potential of groupware with AI capabilities was recog-
nized even in CSCW’s early days. Connolly and Edmonds
[5] suggest the concept of an agent “has emerged as central”
to combining CSCW and AI. Skipping forward a decade,
Hollnagel [15], in the context of cognitive task analysis, al-
lows some AI agents a potential status similar to human
ones, being elevated to autonomy from being merely tools.
Such AI agents, like people, have goals and means of achiev-
ing them.

Reviewing, and while supporting, Hollnagel’s proposals, Di-
aper [10] suggests a more extreme position, based on his task
analysis and general systems analysis approaches (e.g. [9,
11]), where a “work system” is an agent composed of a col-
lection of components in a general system which function to-
gether to perform work (defined as changing the application
domain). In the context of task performance, such agents are
often ephemeral, indeed, they are really a systems analyst’s
model of how work is achieved. Critically, it is the agent,
rather than its components, that possesses goals, even when
such components are intelligent entities, human or machine.

It may be a useful level of analysis to treat a person, or an AI
device, as an agent. Nevertheless, the concept of an agent
need not be co-extensive with human or machine entities
treated in such a singular manner. Indeed, in analyzing how
groups of people perform work, it is usually necessary to
understand not what individual people do, but what they do
collectively.

Well documented in the CSCW literature are the problems
and difficulties with group working, and with successfully
implementing groupware of an adequate sophistication to
support the requirements that CSCW researchers have iden-
tified. Diaper (1986a) identified the even greater problems
when some of the things in a system were intelligent but not
human. If people have difficulty understanding what they do
alone at a task, and even more so when working with other
people, then how much harder will it be when alien AIs are
added to the mix?

Several aspects of intelligence are particularly useful in achiev-
ing productive collaboration: a theory of mind that allows
individuals to usefully speculate about the beliefs, desires
and intentions of their collaborators; an ability to negotiate
or otherwise accept joint decision-making; and some prag-
matic competence that allows the individual to parse implicit
as well as explicit meaning in language.

If CABot is to become a useful collaborative agent, these
types of intelligence may be required. Some future gener-
ation of CABot will eventually learn these abilities in the
same way that it learns other cognitive functions. In the in-
terim, is it preferable to give CABot “prosthetic” versions of
these abilities, using external systems that support argumen-
tation for example? Or can CSCW systems bridge the gap
between an agent that lacks these abilities and human users
that expect them?

CSCW AND AI
CSCW issues rather than the technological problems will
provide the main future research challenges for CSCW. To
illustrate the sorts of issues that are known from CSCW re-
search to be problematic, four examples are selected and de-
scribed below: conflict; democratic decision making; argu-
mentation; and role definition. In each case, it is argued, that
adding intelligent AI systems leads to further complications,
and it is concluded that recognizing these sooner, rather than
later, is desirable and wise.

First, a great deal of collaborative work involves conflict
[12]. Conflict, per se, is not a bad thing, and in many in-
stances it is desirable and needs to be exploited if collabora-
tions are to be successful. As well as differing in many other
ways, such as in knowledge, skills, personality and ethics,
different people have different agendas. This is reasonable
when they have different responsibilities. Collaboration is
most challenging when these conflicts fail to be resolved.

How should conflict between a human and an AI be resolved?
One could certainly imagine cases where an AI’s preferences
and agenda might be the desirable option. As an example,
we can entertain a role for an AI to act as a mediator support-
ing conflict resolution between people - such an AI would
always be in conflict with some of the collaborators, since
mediation tends to require operations involving things such
as bargaining and compromise. Would human collaborators
be happy to compromise with an AI? What factors might in-
fluence their willingness to accept the AIs input, rather than
overruling it?
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Conflict may also be resolved through voting. There are ar-
guments that voting is not actually a very good mechanism
for small group decision making, with problems such as:
empowering the largest minority and not a divided major-
ity; polarization of opinions; choosing the least bad option;
giving undue power to floating voters; and strategic voting
and bargaining so that decisions are made based on unre-
lated and irrelevant, and potentially even corrupt, external
factors. There are many types of voting systems and polling
algorithms that lead to different group behaviors. Particu-
lar decisions may be reached because of the details of the
democratic system used. Will users accept an enfranchised
AI system with a vote of its own? How might those votes
be weighted? How should the voting system be designed in
order to support combining human and AI votes?

AI systems that understand language and can act on infor-
mation received from other intelligences may also be open
to persuasion. How will people adapt their arguments to a
non-human intelligence, on what basis will they be able to
influence it? How people will work with future non-human
AIs will depend to a great degree on people’s beliefs about
them.

Furthermore, how might AIs learn to influence their human
collaborators? Successful argumentation relies on an un-
derstanding of the audience [24]. If an agent’s intelligence
does not encompass a theory of mind, how can it under-
stand its audience? Some form of prosthetic argumenta-
tion support could be considered, such as the systems de-
scribed in [20], which can segment arguments and identify
warrants and conclusions for example. But the question re-
mains: to what degree will human collaborators accept per-
suasion from an artificial agent?

These three examples (conflict resolution, voting and argu-
mentation) all rest on the answer to a fourth issue: what are
appropriate roles for AIs? Roles can be official or unofficial,
explicit or implicit, and fairly stable over time or rotating,
evolving and ephemeral. It is not going to be easy to de-
sign roles for AIs in collaborative work systems, particularly
when, in some cases, it is actually desirable for collaborators
to take on poorly defined roles temporarily.

Learning is a fundamental property of artificial neural net-
works. There is no reason why future AI systems of this
sort could not learn and evolve their own roles, as people
frequently do. Task analyses, ethnographic studies or other
data sources demonstrate that people have tacit understand-
ing of their roles, and that they are not good at describing
what those roles are. Why would we think an AI would be
better than people at describing a role that it had evolved?
Furthermore, is it necessary for an AI to be able to describe
its role, if it is performing it usefully?

As roles change, co-adaptation is likely to lead to difficulties:
in modern approaches to complex systems design in HCI
(e.g. [4]), it is recognized that people adapt their behavior to
the tools that are available. Collaborative AIs may also adapt
to the user. Diaper [7] pointed out a number of problems

with auto-adaptive computer systems, a major one is how
to explain what has changed in the system to users. Such
problems will remain and there seems no reason to suppose
that AIs will be any better than people at explaining what
they are learning.

There may be many other questions that the CABot agent
poses with regard to collaborative working. These questions
should be addressed sooner rather than later, as the answers
will affect the type of intelligence we need future genera-
tions of CABot to include.

DISCUSSION
While our current, simulated neural networks are far too
small to display a widely applicable range of behaviors, they
do demonstrate the basic sensory, cognitive and response ca-
pabilities that a truly intelligent, non-human agent will need
to work with people. Furthermore, we expect that chips with
a billion neurons will be available within two years [19].
This new hardware will allow simulations of networks four
orders of magnitude larger than at present. Developments
might be fairly rapid, even within half a dozen years once
that hardware is available, because the CABot approach al-
lows its systems to learn and be self organizing and hence
they will be genuinely autonomous.

While waiting for such hardware developments, the CABot
simulations have demonstrated in miniature that many of the
essential human mental capabilities are possessed by the sys-
tems that have already been developed, and which are be-
ing extended. CABot is a significant step towards intelligent
agents that may collaborate with human users, or with other
AIs. It is significant both in its architecture, which aims at
biological fidelity, and in its behavior, which aims at cogni-
tive fidelity. As such, human users may act towards CABot
in the same way that they would act towards other people.

CABot is not yet ready to offer collaborative abilities on a
par with its human counterparts. Even if it could, experience
shows that collaboration would still be challenging. The re-
sults of CSCW and HCI research are therefore essential to
the successful adoption of artificially intelligent collabora-
tive agents. The intention of this paper is threefold. First,
to sound an alert that the technical capability to finally pro-
duce AI agents capable of human level ratiocination may no
longer be distant science fiction.

Second, to focus and initiate discussion of what sort of AIs
we need, how we should use them and what problems must
be overcome if people are to work collaboratively with arti-
ficial intelligences.

Third, we believe that incorporating an AI into human ways
of working (rather than humans adapting to work with AIs)
may be much harder to achieve than it first appears. Iden-
tifying these issues now might direct research in HCI and
CSCW, we hope, in preparation for future technological de-
velopments in AI.

The challenges we foresee, such as conflict and role man-

4



agement, require new approaches to collaborative working.
These approaches must take into account the expectations
that human agents will have when interacting with an artifi-
cial agent with some human-like abilities. These approaches
must also take into account the limitations that the agent has,
which will make it difficult to fulfill such expectations.

We believe that the efforts of the CSCW community in sup-
porting collaboration between human agents is ripe for ex-
tension into human-AI and AI-AI collaborative systems. This
work should begin now, so that the technical and behavioral
challenges can be met concurrently.
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