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Abstract – CABot1 is an agent in a simple videogame that
assists a user in the game. Like the user, it views the game;
it takes commands from the user, the commands are used to
set goals, and the system interleaves all of these processes.
Crucially, CABot1 is implemented entirely in simulated fa-
tiguing Leaky Integrate and Fire neurons. The long term
goal of this line of research is to develop a system that can
solve the Turing test. The author believes that the best ap-
proach to building such a system is to mimic humans at a
neural and psychological level. CABot1 makes use of the
Cell Assembly hypothesis as the neural implementation of
symbols, and as such, CABot1 processes symbols. Devel-
oping increasingly complex systems, like CABot1, that are
grounded in an environment should lead to a system that
is capable of grounding its symbols, learning new symbols,
rules and relationships. If such a system is allowed to learn
enough, it will be able to pass the Turing test. CABot1 does
not pass the Turing test, but it does demonstrate how vision,
language, and planning can be implemented in a neural sys-
tem and integrated into a useful system.

Keywords: Fatiguing Leaky Integrate and Fire Neu-
rons, Videogame Agent, Turing Test, Neural Agent

1 Introduction
CABot1 is a prototype games agent for an EPSRC funded

project. It is an agent in the game and assists the user in
the game. To do this it process visual information, and the
user’s natural language commands; it has a goaling system
and a system for controlling activity within the system. It is
implemented entirely in fatiguing Leaky Integrate and Fire
(fLIF) neurons.

Though CABot1 does not perform perfectly, it is an ef-
fective assistant. While a symbolic agent might be devel-
oped more easily, the use of neurons provides a hook for
grounding symbols and making use of these grounded sym-
bols. Grounding is relatively simplistic in CABot1, but it
has made a step toward addressing the symbol grounding
problem.

CABot1 is an early prototype for the project, and two
more prototypes are planned within the project. It is hoped
that this work will continue beyond the current project. The
long-term goal is to address the Turing [Turing, 1950] task
and develop a true Artificial Intelligence (AI). I feel that

the best path toward developing a real AI is to follow the
human model closely but not slavishly. It is important to
develop systems that do interesting things, and adhere to
known neural and psychological processes.

2 Background
AI is an ill defined concept. There is currently no ma-

chine that is intelligent like a human, and none is on the
horizon. This said, AI has had incredible advances and is
widely used industrially. Still, no system seems likely to
pass the Turing test [Turing, 1950] in the foreseeable fu-
ture. The advantages of a system that could pass the test
are obvious including, for example, improved user inter-
face, improved data mining, better videogames, intelligent
assistants, intelligent monitoring, and excellent tutorial sys-
tems to name a few.

AI has had many successes over the years, and AI tech-
nologies are increasingly relevant in industry. Expert sys-
tems have been used for decades to solve specialised prob-
lems. Until the 80s, AI generally referred to symbolic sys-
tems. It was hoped that symbolic systems would lead to a
system that could pass the test. Unfortunately, these sys-
tems required knowledge to be placed into them. Systems
like Cyc [Lenat, 1995], had an incredible amount of time
put into developing their knowledge bases, and, though use-
ful, showed that the symbolic approach alone was unlikely
to easily lead to a system that can pass the test.

Machine learning systems currently provide a host of in-
formation for industry and the public at large. Machine
learning could provide the solution to the problem. The sys-
tem could be programmed with some basic facts, and could
then learn other things. Current machine learning systems
are, however, limited to either trivial problems, very sim-
ple domains, or to using highly pre-processed or simplified
data. What then would be a good way to build a system that
could pass the Turing test?

One promising mechanism might be to use a cogni-
tive model like ACT [Anderson and Lebiere, 1998]. These
models are largely symbolic, but do account for a wide
range of human psychological data. While ACT and other
symbolic cognitive models can learn, they are restricted to
combining existing symbols in novel ways. What is needed



is a way to ground symbols [Harnad, 1990].
One mechanism for grounding symbols is to use simu-

lated neurons. This approach has been used, and, though
still in its infancy, is promising because it can take ad-
vantage to known results about human (and other ani-
mal) neural learning. The Cell Assembly (CA) hypoth-
esis [Hebb, 1949] provides a useful bridge between neu-
rons and symbols. A CA is a set of neurons that has
high mutual synaptic strength that can provide a reverber-
ating circuit; it is the neural basis of symbols. Extensive
neuropsychological evidence supports this hypothesis (e.g.
[Abeles et al., 1993]).

There has been a vast amount of research in neurophys-
iology and neuropsychology. All of this provides evidence
on how to build a system. However, these studies usually re-
late to a small number of neurons. Understanding of emer-
gent properties of neurons is at an early stage. One way
to improve this understanding would be to build a neuro-
cognitive architecture [Huyck, 2001]. Interestingly, this ar-
chitecture would also provide a platform for developing a
system that could pass the Turing test. After all, the Turing
test is just a human trying to decide if a system is human or
not.

CABot1 is not a neuro-cognitive architecture. It is a so-
phisticated neural system that is hoped to be a stepping
stone toward such an architecture. The next section pro-
vides some reasons for the development of CABot1.

3 Reasons for CABot1
The first question is: why a videogame? In the long run,

it is important that the agent is embodied in an environment.
This enables the agent to interact with the environment and
learn from the interaction. The real world is a rich environ-
ment and thus a robot would be an excellent agent. How-
ever, a robot requires hardware and a range of sensors and
actuators. A videogame still provides sensory input, and
the agent can act, but compared to a robot it is quite simple
to make the action. Moreover, the videogame can be more
easily controlled than the real environment.

The second question is: why neurons? The prior section
provided some answers to this question. People think using
neurons. Neurons can be used to learn relations, to learn
new rules [Huyck and Belavkin, 2006], and for symbol
grounding. Finally, neural systems are Turing complete so
anything that can be programmed can be programmed in a
neural system. In particular, fLIF neural systems are Turing
complete; a quick proof is that any FSA can be programmed
with fLIF neurons [Fan and Huyck, tted]; a stack can be im-
plemented with fLIF neurons [Huyck and Fan, 2007]; any
Turing machine can be implemented with a FSA and two
stacks. This is a novel result but is not particularly surpris-
ing as others have proved that other types of connectionist
systems are Turing complete.

The third question is : why fLIF neurons? fLIF neurons
are a relatively accurate model of biological neurons. The
integrate and fire (IF) model [McCulloch and Pitts, 1943]
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Figure 1: Interaction Between CABot1 subsystems (con-
trol, vision, planning and language) and Crystal Space.

is a long standing biological model. Work on spin glass
models of IF neurons [Hopfield, 1982] has strong math-
ematical foundations. These models and their extension
to include leak of activation when a neuron does not fire
(LIF) [Maass and Bishop, 2001] are widely used in mod-
elling neuropsychological phenomena (e.g. [Amit, 1989]),
but the mathematical foundations require that neurons are
well connected and the connections are bi-directional. Con-
nections in the brain are uni-directional and neurons are not
well connected. Still LIF models using this topology are
widely used in modelling neuropsychological phenomena.

The introduction of fatigue into the model is relatively
uncommon [Huyck, 2007]. As a neurons fires, it tires and
becomes more difficult to fire in the future. This fatigue
extends the LIF model to the fLIF model. One benefit of fa-
tigue is that it enables the network to more easily transition
from one state to another. With a simple model designed for
categorising one input, only one state is needed, but with
more complex processing, the system needs to move to new
states. CABot1 is an example of a neural system that does
complex processing.

4 CABot1
CABot1 is a neural system that views the environment,

processes language, and performs actions. The author
is aware of only one other neural system that does this
[Knoblauch et al., 2004]. Unlike this system, CABot1 pro-
cesses a context free language, and incorporates a planning
system.

The overall architecture is represented in figure 1. The
agent operates in a games environment (see section 4.1) as
an assistant to a user. The user issues natural language text
commands that are sent to the language subsystem, and the
view of the environment from the agents perspective is sent
to the Vision subsystem (see section 4.2). Crystal Space
gets the commands issued from the planning subsystem (see
section 4.3). CABot1 consists of the four subsystems, and
the control subsystem manages planning and language pro-
cessing. The vision and language subsystems send infor-



mation to planning. Each subsystem consists of subnets of
fLIF neurons and all are explained more thoroughly below.

4.1 Crystal Space
CABot1 is an agent in a video game. The game is im-

plemented in Crystal Space [CrystalSpace, 2008], a freely
available games engine. One of the tutorials provided in
the Crystal Space download was modified to be the game.
The game is extremely simple and is based within a single
room. There is a user, the CABot1 agent, and one item,
either a pyramid or a stalactite. The user and agent each
have a separate view of the room, and both can turn left
or right or move forward or backward. The user can also
send commands to the user via text. The agent’s camera
views are saved to .jpg files, the user commands are written
to a file, and these are the input to CABot1. The output of
CABot1 is a series of one of the four commands, left, right,
forward, backward, or one of two error codes. The Crys-
tal Space game reads these commands and the agent in the
game moves.

4.2 Vision & Parsing Subsystems
The two largest subsystems of CABot1 are the vision

subsystem and the parsing subsystem. As both vision and
parsing subsystems have been described elsewhere, so the
descriptions here are brief.

An earlier version of the vision subsystem
[Huyck et al., 2006] recognised wire frame objects.
This system is relatively simple consisting of a simulated
retina of on-off and off-on detectors, a primary visual
cortex of line and angle detectors, and a specific secondary
visual cortex to recognise two shapes. The addition of edge
detectors to the simulated primary visual cortex allowed
the system to recognise solid pyramids and stalactites. To
some degree, the simulated retina and primary visual cortex
are biologically realistic. On the other hand the secondary
visual cortex is a rough way to get the system to work. The
active visual item resides in this area persisting in both
position variant and invariant CAs.

The parsing system has been described elsewhere
[Huyck and Fan, 2007]. It uses variable binding via short-
term potentiation to implement a stack and verb frames.
The semantic result of the parsed sentence is stored in the
verb frame.

4.3 Planning & Goaling Subsystem
The planning and goaling subsystem was inspired by the

Spreading Activation Network [Maes, 1989]. The fLIF im-
plementation is based around three subnets, the fact subnet,
the module subnet and the action subnet.

The fact subnet contains the facts and current goals of
the agent with each fact represented by a CA. If the fact or
goal is current, the CA is active with a large percentage of
neurons firing. Facts can be set from the visual subsystem
or from the planning subsystem itself. For CABot1, the rel-
evant part of visual input is stored in the secondary visual

cortex (see section 4.2). As symbolic facts this can be sum-
marized as object, object size, and location. So if there is a
small pyramid in the left part of the agent’s visual field, the
secondary visual cortex ignites the left fact, pyramid fact,
and small fact CAs. These facts change as the environment
changes.

Goals are also CAs in the fact subnet and are set either
from the parsing subsystem or from the planning subsys-
tem. When parsing is completed, the top stack element is
activated. This leads to the activation of the semantics of the
user’s command in the form of a verb frame. Connections
from this frame to the goals cause the appropriate goal to
be activated. So if the user commanded “Go left.” the left
goal would be set via activation from the parsing’s semantic
representation of the sentence.

The second subnet is the modules subnet with each mod-
ule having its own CA. A module is a rule which if acti-
vated causes an action to occur, and may change the facts
and goals. So, there are connections from the fact subnet
to the module subnet. If the appropriate facts are active,
a module will ignite. The module may have connections
back to the fact subnet to change the internal representation
of the world. For instance, if the user enters the command
“Go right”, the go−right goal is set by the parsing subsys-
tem. This requires the system to turn right and then move
forward. This is accomplished by two module CAs, the first
turns right, turns the initial goal off, and turns the new goal
- move forward - on. The second moves forward and turns
the goal off. Modules do not actually execute commands,
they merely send activation to the third subnet.

The third subnet is the action subnet, consisting of six
CAs, one for each of the four primitive moves, and one for
both of the possible errors. If one of these CAs becomes
active, a command is emitted to a file that is read by Crystal
Space. The CA turns itself off so other commands can be
run.

It should be noted that the plans are context sensitive and
in some cases are terminated by environmental stimuli. For
instance, the command “Turn toward the pyramid.” is con-
text sensitive. If the pyramid is on the left, the agent turns
left, if on the right it turns right, and if in the centre, CABot1
issues an error “already facing centre”.

The command “Go to the stalactite.” can only be filled
when the agent gets to the stalactite. Thus a series of com-
mands needs to be emitted. The plan tries to centre the
stalactite in the visual field while moving forward. It only
stops when the stalactite becomes very large in the visual
field.

4.4 Control Subsystem
The control subsystem manages the interactions between

the other three subsystems. It is a single subnet consisting
of five CAs. The CAs are arranged so that a loop is exe-
cuted. The loop is:

1. Get Command
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Figure 2: Flow of Control of Control Subsystem.

2. Parse Command

3. Set Goal

4. Fulfil Goal

5. Erase Parse Stack

This is represented by figure 2. The overall behaviour of
the agent is simply to wait for commands, parse them, and
then execute them.

Initially the system waits for a command from the user.
When one is received parsing begins. When parsing com-
pletes (the S → V Pperiod rule is applied) the goal is set by
the control CA activating the first parse stack item. When a
goal is set, an appropriate fact subnet CA is active, and the
control subsystem moves on. When no goal remains, the
control net moves on to erasing the parse stack, to allow an-
other sentence to be parsed. When the erasing is completed,
the loop starts again.

During this process inhibition is used to suppress other
activities. So during parsing, the planning nets are sup-
pressed so no actions occur, and during goal fulfilment,
parsing is suppressed.

This control does not directly affect vision. Vision is con-
stantly active, but its effect on facts only registers during the
set and fulfil goal phases.

4.5 Evaluation
A range of evaluations have been performed on CABot1.

Several evaluations have been done on the subsystems, but
here the evaluations of the performance of the entire agent
are briefly described.

Firstly, it must be noted that there is some degree of ran-
domness in the creation of a particular agent. That means
that some nets will perform differently than other nets. For-
tunately, nets can be stored and reread so that stable agents
can be evaluated.

CABot1 processes ten commands that can be grouped
into four basic categories. Performance within category
is largely consistent but performance between categories
varies. The simplest command is to do a direct action.
There are four of these: “Turn left.”, “Turn right.”, “Move
forward.”, and “Move backward.”. The best nets get these
commands correct over 90% and the average nets get
around 80% of these correct. So if the command is “Turn
left.”, the agent emits the left command to Crystal Space.

The failures are largely due to the planning subsystem, but
some problems arise in parsing.

There are two compound commands which require two
actions. These are “Go left.” and “Go right.” and the cor-
rect output is the command “left” (or “right”) followed by a
“forward” command. The best nets perform correctly 85%
of the time and the average nets do the right thing 75% of
the time. The extra failures are due to problems in the plan-
ning subsystem. For both of these categories, vision failures
do not lead to problems as they are not involved in the pro-
cess. Throughout, control problems rarely arise.

The third category of commands are context sensitive
commands, and there are two: “Turn toward the pyramid.”
and “Turn toward the stalactite.” The correct output is
the command “left” or the command “right” depending on
where the object is in the agent’s visual field. The best nets
get 75% of these correct and the average performance is
around 60%. Vision problems arise here, but the increased
parsing complexity also leads to some problems. Note also
that these tests require different contexts. The system must
present the desired object to the left, right, and centre, no
object, and the opposite object. It also has to output the
appropriate error - “already facing centre”, or “object not
present”- in the appropriate case.

The final category requires feedback and these two are
“Go to the pyramid.” and “Go to the stalactite”. The cor-
rect output here is a series of actions that result in the agent
being adjacent to the object. The best nets achieve the goal
roughly 50% of the time, and the average net does so 35%
with some nets unable to achieve the goal. One problem is
over correction during centring.

What is clear from these experiments is that the system
works, though it is far from perfect. It also works on a
rather small set of commands and in an impoverished envi-
ronment. While the parser could easily accommodate more
commands (it already handles 23 commands correctly up
to 99% of the time) and control works almost all the time,
vision and planning are more constrained. The secondary
visual cortex is set to work for two shapes only; other ob-
jects could be programmed, but that might lead to interfer-
ence. Planning can be improved and expanded relatively
easily requiring specific modules to be designed and imple-
mented.

The results are satisfactory to show that the CABot ap-
proach works in principle. While the particular system
could be improved for performance, a more general ap-
proach based around learning will be more effective in the
long run.

5 Future Work & Conclusion
CABot1 was the first prototype of three planned proto-

types on the current project. It has been successful at in-
tegrating language processing, visual processing, and plan-
ning into a single agent that is implemented in simulated
neurons.



CABot2 is currently being implemented with a target
completion date of July 2008. The focus of this agent is
to use CABot1 as a foundation for exploring learning. All
learning is done via Hebbian synaptic weight modification.
Two learning tasks have already been completed. The first
is a semi-supervised labelling task where the visual con-
cepts pyramid and stalactite have the appropriate labels at-
tached via co-presentation. That is the word pyramid is pre-
sented along with a visual pyramid, and this association is
learned. A second task is to learn the correct action for a
given goal. This is done via feedback from the environment
and this may provide the basis for learning new modules.

Two further tasks are being implemented. The first is
prepositional phrase attachment ambiguity resolution. This
is implemented with semi-supervised learning with correct
attachments being supplied. This use hierarchical learning
to allow generalisation. This hierarchy requires the parser
being rewritten. As the CABot1 parser has timing problems
(it takes a lot of simulated time to parse a sentence), a more
efficient parser without a stack is being implemented. The
second task for learning is to learn new visual objects.

CABot3 is in the planning stages now. The target date
for completion is May 2009 with the grant finishing at the
end of July 2009. It is hoped that this agent will be based in
a more sophisticated game environment so that it can learn
from the environment. It is also hoped that it will be more
interesting to play.

A follow on grant is envisioned starting in 2009 and fin-
ishing in 2012. This will probably have multiple prototypes
called CABot4 etc. The plan is that these agents will be
conversational agents so that they can both understand and
produce language. These should have more sophisticated
cognitive mapping ability to build up sophisticated domain
representations. It is also hoped that these agents will mimic
more psychological data.

A similar goal is to build a neural cognitive architecture.
This will be a growing body of work where more and more
psychological phenomena are accounted for by the archi-
tecture and one or more implementations. Systems built
on this architecture should be developed in more and more
domains. As humans can learn new domains, it is hoped
that these systems will be able to learn new domains. One
prominent goal is passing the Turing test. This work will
benefit from a community of developers using this and re-
lated architectures.

The long term objective is to develop a system that can
pass the Turing test [Turing, 1950]. Eventually, these agents
will move from the virtual world to the real world in the
form of robots; this will require a range of motor and sen-
sory control that can be avoided in virtual environments.
However, this will give the agent access to a new range of
haptic and motor semantics. Reaching the long-term ob-
jective will require a long range effort with a host of prob-
lems to be solved along the way; indeed it is highly unlikely
that this effort will succeed without participation from more
than one research group. However, by using human neural
and psychological performance as guideposts, and develop-

ing ever more capable systems, this approach can succeed.
CABot1 can be downloaded from

http://www.cwa.mdx.ac.uk/CABot/CABot.html. CABot2
should be available by the time of publication. The author
encourages anyone interested in this project to contact him
via email.
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