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Abstract – A long-term research and simulation method-
ology based on simulated human neurons is presented. One
medium-term goal of this methodology is described; a soft-
ware games agent that integrates vision and language in a
biologically plausible manner will be developed. An im-
plementation of a prototype vision system and the proposed
topology of this agent is described. Part of the methodology
is to address difficult neuro-theoretical problems; this pro-
posed system will address the symbol grounding problem.
Symbols will be grounded by the agent’s interactions with
the environment.
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1 Introduction
One of the major approaches to Artificial Intelligence

(AI) is to develop a system that closely approximates the
human brain at the neural level. A successful AI is often
thought of being a computer system capable of passing the
Turing test [21]. Initially proposed in 1950, the test involves
the notion of placing a human dialogist in one room, a com-
puter one in a second room, and a human judge in a third
room communicating with the other two. The judge must
determine which dialogist is human and which is the com-
puter; if the judge cannot do this, the computer has passed
the test. Passing the Turing test is a long standing target for
AI researchers, but despite advances in the field of AI, no
computer system has yet come close to passing the test.

At least two reasons are to blame for the failure of AI
systems to come close to passing the Turing test. Firstly,
most systems are based around symbols and these symbols
have no firm connection to some world. This is known as
the symbol grounding problem [3]. This lack of ground-
ing makes it difficult for the system to learn from its en-
vironment, and thus learn the range of things that people
are able to learn. Secondly, few systems are domain gen-
eral. AI has been successful on domain specific problems
so, success following success, there has been a great deal of
development work on domain specific systems. The Turing

test, however, has always been intended as a domain general
problem; the dialogists and judge can explore any topic or
topics to any depth. It has proven very difficult to build do-
main general systems. For example, Cyc [15] attempted to
build a domain general system which boot straps a symbolic
system by inputting a large amount of information from a
few key domains. It was believed that it would then be able
to learn about new domains based on this key information,
but the system was far from successful at easily learning
new domains.

Neural systems, it is claimed, can resolve both the sym-
bol grounding and domain generality problems. The Cell
Assembly (CA) hypothesis [5] states that human concepts
are stored in groups of neurons that have a high mutual con-
nection strength. These neurons can be activated directly or
indirectly from their external environment causing a cas-
cade of neural activity in the CA that can persist after the
external activation ceases. The neural connections can be
learned in an unsupervised manner from the environment.
So, the CAs are based on environmental input and thus are
grounded.

Domain generality might be solved by developing neu-
ral systems that follow a biological human model. That
is, systems are based on known human neural topology,
which causes the systems to perform within known psy-
chological parameters. This neural cognitive modelling ap-
proach provides an obvious set of target parameters. The
aim is to develop systems that adhere to known neural struc-
tures and perform tasks that humans perform in a way that
is consistent with what is known of biological and neuro-
psychological processing. The more psychological phe-
nomena that can be accounted for, the better the system.

To build a system that can pass a Turing test, the system
needs to be based in a reality and from it learn symbols,
new ways of combining symbols, and new mechanisms of
combining symbols. Some artificial neural systems can do
these things.

The authors have been constructing increasingly complex
neurally based systems. The neural model is based on a type
of Leaky Integrate and Fire (LIF) neuron [20] that fatigues.
This paper presents initial work on an AI system that acts as
an agent in a virtual environment. The agent will combine
a visual system with natural language input processing and



output behaviour. CAs are composed of neurons, are the
neural correlate of symbols, and will be activated via vision
and language. Initial work, based on a neurally and topo-
logically plausible simulation, on the agent’s visual system
is described. The proposed architecture for this integration,
all based on fatiguing LIF neurons, is also discussed.

2 Methodology
The vision system work described in this paper is a por-

tion of a larger method and research agenda. The ultimate
goal of this agenda is to build a system capable of pass-
ing a Turing test. The current project involves building a
virtual games agent that senses its environment, behaves in-
dependently in the environment, takes commands in natural
language and intelligently replies to, or acts on, them.

The overall plan is to start with relatively simple systems,
then to use these systems as the basis of more complex sys-
tems that do more complex tasks. While building these sys-
tems, three basic tenets are followed:

1. Resolve neuro-theoretical problems as they arise. Ba-
sic theoretical problems, such as variable binding and
symbol grounding, have been identified. These prob-
lems need to be resolved. Solve these problems as
soon as possible to avoid pursuing paths that will fail in
the long run. Also, identify new theoretical problems
as soon as possible.

2. Pay attention to neurobiology, neuro-psychology and
psychology. Try to build systems that adhere to known
neuro-biological, neuro-psychological and psycholog-
ical theories. The systems need not adhere to all con-
straints, but should identify omissions and inconsis-
tencies that future systems should attempt to resolve.
Unlike traditional cognitive architectures, this method
would lead to an implementation of a cognitive archi-
tecture in the relatively well understood neural band
[17]. Higher level bands, e.g. the cognitive and ratio-
nal band, would be implemented in this basic band.
System performance at each band can be compared
with the appropriate human correlate. This tenet leads
to four particular sub-tenets.

(a) Use a neural model that is a close approximation
of human neurons. It does not need to be a per-
fect model, indeed it cannot be perfect as it needs
to be efficiently simulated on a computer.

(b) Implement systems that are grounded in a world.
Humans exist in their world, which is part of a
physics universe, for example, only some fre-
quencies in the electromagnetic spectrum are vis-
ible. Apart from the physical, other properties
can exist in a system’s world, for example, the
probability of an event occurring. Some proper-
ties, however, such as social or ethical ones, or
Gibsonian affordances [4], which can apply to

any thing in a world, can either be genuine prop-
erties of the world itself or they could be prop-
erties of the model of the world constructed by a
system, human or AI. Either way, this allows an
AI system’s symbols to be grounded and allows
interactions between the AI agent and its world.
Moreover, it allows the AI system to solve prob-
lems in its world.

(c) The system should learn in a biologically plausi-
ble manner. The Hebbian Learning rule [5] is
supported by biological evidence. Learning is
crucial to allow the system to develop.

(d) Components should be integrated. Subsystems
should be combined and connected in a manner
similar to how areas of the brain are connected.
This enables the communication and sharing of
information. Note that this is all consistent with
Hebb’s CA hypothesis; groups of neurons with
high mutual synaptic strengths are the basis of
human concepts. There is evidence that a given
CA can span several portions of the brain [18].
So, the concept of dog will have some neurons
from the visual areas, some from the cognitive,
language and motor areas, and some from else-
where in the brain e.g. areas associated with gen-
eral emotional responses to dogs, such as loving,
or being frighten of, nearly all of them.

3. Implement systems. Systems are really a great testbed.
Implement them to see where the problems are, and to
have things that are useful to solve problems.

These tenets form the basis of a development methodol-
ogy. Systems using this methodology can be validated by
comparison with other artificial systems, and, crucially, by
comparison with human performance. For example, two ar-
tificial systems can be compared across a range of tasks.
While one might perform better at more of the tasks, the
other may compare more closely to human performance.
For example, it may produce errors or biases similar to those
of people. In this case, the second system may be consid-
ered a better basis for further exploration.

In theory, another advantage of this methodology is that
components can be replaced or combined in new ways.
For example, if someone develops a better vision model,
it should be easy to replace an earlier component, and so
develop a better overall system. In practice, of course, there
are often interface problems between independently devel-
oped components and the ”better” concept is rarely a simple
one, more often being a balance between different function-
ality and the biases of the evaluators as to functional impor-
tance.

3 Previous Work
In earlier work, the first author proposed that neural sys-

tems could be used as an intermediate level for modelling



cognition [8]. The above methodology is a refinement and
expansion of that earlier proposal. This section describes
some related systems, the fatiguing LIF neural model used,
and some prior work that has been done using this neural
model.

3.1 Related Systems
The authors are not the only researchers to build com-

plex neural systems. Systems have been built that are both
cognitive models and functioning robotic systems.

A good example of a cognitive neural model is one based
on continuously variable Hopfield neurons [13]. This com-
bines ideas from cognitive psychology and neural computa-
tion to produce an integrated model for a human-like form
of working memory, noting that psychologists are not in
universal agreement about the detailed properties of the one
or more putative, short duration, human memory systems.
Hebbian learning rules are used to set connection weights.
This system provides a neurally based cognitive model of
serial memory that accounts for several traditional, cogni-
tive phenomena associated with short term information stor-
age, including primacy and recency effects.

As another example, a robotic system has been developed
[14] that takes natural language commands. It is based on
model neurons with a medium degree of biological faithful-
ness, implements a regular grammar, grounds its semantics
in its world, and resolves ambiguity dynamically.

These systems show that neural simulations can be used
to implement complex systems, both as robotic systems and
as cognitive models. One of the key questions in developing
such a system is the type of neural model that is used.

3.2 Neural Model
The systems described in this paper are based on fatigu-

ing LIF neurons. Neurons collect activation from other neu-
rons via synaptic connections. If the neuron does not fire
some of that activation leaks away. Equation 1 describes
the activation of a neuron i at time t if it does not fire at
time t− 1.

Ait =
Ait−1

d +
∑

j∈Vi
wji, 1 < d (1)

The amount of leak is d. Vi is the set of all neurons that
have connections to i and fire at time t − 1. The weight,
or synaptic strength, of the connection from neuron j to
neuron i is wji.

The model is based on discrete time steps. This allows
the whole system to be updated simultaneously. It can be
argued that each time step is roughly equivalent to 10 ms. of
simulated time. This enables the system to ignore refractory
periods and synaptic delay as these are all within the 10 ms.

Neurons also fatigue so that the more closely adjacent
steps at which they fire, the more difficult it becomes for
them to fire. While a simplification of the biological system,
where fatigue is associated with ion transport, it is modelled
by increasing an activation threshold θ if a neuron fires as
described by Equation 2.

θt = θt−1 + Fc (2)

In Equation 2 the threshold θ at time t is set to the threshold
at time t-1 + the fatigue constant Fc. If the neuron does not
fire, the threshold is reduced toward the base resting level
as in Equation 3.

θt = θt−1 − Fr (3)
The threshold is reduced by the fatigue recovery constant
Fr though it never becomes less than θ. So a neuron fires
if it has more activity than the threshold plus accumulated
fatigue. If it fires, it loses all activity and is reset.

In this system, neurons may be inhibitory or excitatory,
but they obey Dale’s principle [2] that a neuron cannot have
both inhibitory and excitatory synapses leading from it.

This fatiguing LIF neural model leaves out much of the
detail of biological neurons, but is intended to capture what
are believed to be the most crucial details for computational
purposes. However, if future simulations show such details
missing, the neural model will be revised to more accurately
reflect a more realistic biology. One anticipated difficulty is
that adding such detail does not guarantee improved AI sys-
tems performance, indeed, it could become worse, for ex-
ample, where newly added detail can only improve perfor-
mance in association with other necessary things that have
not been added. The general approach when adding detail,
therefore, is to go through the complete model of the sys-
tem, revising where appropriate each component that can
provide interaction within a stage, to its output stage(s), and
to preceding stages, i.e. where there are top-down process-
ing effects.

3.3 Prior Work with fatiguing LIF Neurons
Model

Extensive exploration of CA models using fatiguing LIF
neurons has led to a range of simulations. Some of the
more advanced simulations have led to systems with, for ex-
ample, Hebbian learning mechanisms, categorisation pro-
cesses and the ability to apply rules.

The Hebbian learning rule states that two neurons that
have a connection and tend to fire simultaneously will have
that connection strengthened. This leaves a wide range of
possible ways that this can be implemented in AI systems.
A compensatory learning rule has been described [9] that
limits the total synaptic strength leaving a neuron. This en-
ables CAs to form and allows individual neurons to partici-
pate in multiple CAs.

Since CAs that share neurons overlap at the neural level,
this provides a taxonomic mechanism which can form the
basis for hierarchical categorisation. Artificial categories
have been learned [10] in an unsupervised manner and cre-
ate a categorisation hierarchy.

This CA model has also been used for useful human-
world categorisation systems [12]. The model has per-
formed well on a standard categorisation task, the Congres-
sional Voting Task, and on an information retrieval task.

Rules have also been implemented in the model and the
system used for a counting task [11]. This has used a novel
variable binding mechanism based on changing synaptic
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Figure 1: 3x3 On-Off Receptive Field in V1

strength. Spontaneous neural activation is used to erase
bindings. The model has thus already provided a novel solu-
tion to one major problem of subsymbolic AI, the variable
binding problem. The authors have investigated a system
based on the fatiguing LIF model.

The latest system will be an agent in the virtual environ-
ment of a video game called Half-Life [19]. The agent is
an assistant to a player in the game and will take natural
language commands. The agent will sense the environment
from the same data that generates the screen that the user
sees. The agent will move about the environment and try
to fulfil the user’s commands. All processing that the agent
does will be done by fatiguing LIF neurons.

4 Visual System
As a first step in developing the games agent, a prototype,

proof of concept, visual system has been developed for it.
The vision system is broken into three layers simulating the
retina, the primary visual cortex (V1) and the secondary vi-
sual cortex (V2). While a simplification of the human visual
system, the system still possesses functionality sufficient to
recognise lines and simple shapes.

Visual input to the agent corresponds to a subset of pixels
equivalent to those that are presented on a user’s screen.
The system simulates monocular vision with a stationary
eye. The current simulation being used to test its general
computational properties is based on a 30x30 input array of
binary pixels.

Simulated retinal processing, via fatiguing LIF neurons,
codes the input so that output from the retina is a set of spa-
tial frequency tuned channels similar to those recorded in
the human optic nerve. The actual simulation is based on
three sets of overlapping, square receptive fields; the fields
are 3x3, 6x6, and 9x9. Each field functions as having an
on-centre/off-surround and vice versa. The 3x3 on-off re-
ceptive field responds optimally when the centre pixel is
on, and the surrounding eight are off. Figure 1 represents
this with the circle representing on, and the double bars
representing off. Similarly, the 6x6 on-off field responds
optimally when the centre four pixels are on, and the sur-
rounding 32 are off, and the 9x9 on-off receptor responds
optimally when the centre nine pixels are on and the re-
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Figure 2: 6x6 Off-On Receptive Field in V1

maining 72 are off. The off-on receptive fields are the re-
verse of their on-off mates; figure 2 represents a 6x6 off-on
receptive field.

In the logical model of the retina that has been developed,
which specifies the total number of possible outputs, there is
one output for each receptive field, so with 900 input pixels,
there are 5400 logical retinal neurons. The AI system, using
the fatiguing LIF architecture, however, may require fewer
neurons to achieve the number of logically possible retinal
outputs.

These simulated neurons correspond to information that
is passed from the retina to the optic nerve in the human
visual system. It is not, however, an exact duplicate of the
processing steps in the retina. For instance, this simulation
has no fovea, supports only monochromatic vision, and, for
example, has no horizontal cells. Future simulations may
introduce some of these retinal features, but this simulation
is designed to be, and does function as, a simple shape dis-
criminator.

The output of the retina is the input to V1, i.e. processing
in the Lateral Geniculate Nucleus has been ignored. The V1
consists of a series of different types of neurons.

Orientation and position specific line and arc detectors
have been implemented. These are types of simple cells that
are known to exist in V1 [1]. There are six orientations of
line that are recognized, and lines roughly one pixel thick
are recognized. This is done by the orientation and loca-
tion specific V1 line neurons taking inputs from the retinal
neurons that implement the logical 3x3 receptive field. A
simple, repetitive expansion is being implemented so that
more orientations and thicker lines are recognized.

To recognise a horizontal line, neurons in V1 have an ac-
tivation threshold, θ, of four. The connections from the 3x3
on-off receptor in the retina to a particular horizontal line
neuron have weights of 1.4 and each horizontal line neuron
is connected to three horizontally adjacent retinal receptors.
The 3x3 receptors respond suboptimally when a horizontal
line passes through them, firing in the third and seventh cy-
cles. As all three connections to the horizontal line neuron
fire in a given cycle, it receives 4.2 units of activation. This
surpasses θ so the neuron fires indicating a horizontal line
is present.

There are four different orientations of angles that are



recognized. These take inputs from the neurons that imple-
ment the 6x6 receptive fields. They only recognize angles
when lines do actually meet. The angle neuron has connec-
tions from the 6x6 on-off neurons that have weights of 3.
An angle corresponding to the less-than sign, for example,
has connections from neurons that implement the receptive
field centred on the angle, the one above and to the left, and
the one below and to the right.

The output of V1 is the input to V2. V2 is set to recog-
nize two orientations of hollow triangles. It does this both
position dependently and independently. Output from the
line and arc neurons in V1 is sent to neurons in the V2. Ad-
ditionally, input from the retinal neurons with 9x9 off-on
receptive fields is also sent to V2. Together, these neurons
activate position and orientation specific triangle detectors.
These specific triangle detectors also activate location inde-
pendent neurons in a fashion similar to earlier hierarchical
categorisation work [10].

The separation of V1 and V2 is clear in the AI system,
but it probably corresponds quite poorly to human neural
architectures. For example, in bigger systems, the larger
receptive fields will project to V1 as well as, or instead of,
to V2.

These initial implementations are just the beginning
phase of a visual processing system, but we believe that they
provide a sound basis for further work on the other major
components. Future work on visual processing will include
motion detection, simultaneous multiple object recognition,
and the learning of new objects, but not, of course, in this
project, stereopsis.

In the current system there is no learning as the connec-
tion weights and topology were programmed. Future work,
based on previous implementations (e.g. [10]), will imple-
ment the fatiguing LIF mechanisms so that weights can be
learned, changed and maintained.

5 Outline of the Proposed Agent’s
Architecture

The vision system is just one component of the proposed
agent. The role of the agent is to support a user playing
the Half-Life game and to do this it will integrate vision,
language and action. The agent has to see what is in the
environment and be able to understand the user’s language
input, be able to reply to the user, and convert user com-
mands into actions that are performed in the game. The vi-
sual processing of the agent will be modelled as described
in the prior section and both language and action will be
modelled using the same fatiguing LIF architecture.

Words will be represented by CAs so they can remain ac-
tive after external stimulation ceases. Language processing
capabilities will have two sources. First, nouns and con-
crete adjectives will be presented along with visual repre-
sentations of each word, so that these will become associ-
ated. Thus, the symbolic words will be grounded with their
visual representations, yielding grounded symbols.
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Figure 3: Simple Rule Topology

Second, while it is difficult to stimulate neurons directly
in the brain, it is simple to do so in the simulation. A word
can be presented directly to the model by stimulating some
of the neurons associated with the word. Language pro-
cessing will be a neural implementation of earlier symbolic
work [6]. A mechanism for neural language processing has
already been proposed [7]. Parsing rules will be derived
from linguistic data and an existing rule system [11]. The
application of the rules and conflict resolution will be done
by a parsing system using a pseudo-stack.

In later implementations, a spreading activation net [16]
will be used to give the agent goal-directed behaviour based
on the user’s natural language inputs, while remaining re-
sponsive to the immediate environmental context that both
user and agent can see and act upon. The extent to which
longer term, higher level goals can be supported by the
agent, particularly when the route to such goals is indirect,
i.e. as typically found in ’Tower of Hanoi’ type situations,
remains an empirical issue to be investigated.

The spreading activation net will be linked to a network
representing the motor area in the brain. As the Half-Life
game requires symbolic inputs for actions, these will be
triggered by CAs in the neural agent. So, if a CA in the mo-
tor region is active, the agent will emit a symbolic command
to the Half-Life game to execute the appropriate action.

Figure 3 is a diagram of the entire proposed system. Solid
boxes have an initial implementation, and dashed boxes are
proposed modules.

The new system will solve another major problem asso-
ciated with subsymbolic AI, the symbol grounding problem
[3]. Moreover, these problems will be solved with a biolog-
ically plausible neural model, fatiguing LIF neurons, and
biologically plausible neural topologies. While this model
and the topologies are simplifications of the brain, they
should be sufficient to implement the proposed AI game
agent.



6 Conclusions
The proposed agent will address the fundamental symbol

grounding problem of AI. By solving this problem, the sys-
tem will be able to learn natural semantics. This will open
a new class of systems that can learn from the environment
by interacting directly with it. This system will take advan-
tage of all three tenets of our methodology: a system will
be implemented; it will adhere reasonably closely to known
neurobiology; and the system, for example, will address the
long standing neuro-theoretical problem of symbol ground-
ing.

A simple vision system has been described that adheres
closely to some of the known properties of the human visual
system. Based solely on fatiguing LIF neurons, a biologi-
cally plausible model, it processes and stores information.

A proposal has been made for the integration of this mod-
ule with proposed language and action modules. These new
modules and the integration process have been sketched.

By processing with biologically plausible neurons and
using biologically plausible topologies, the system can use
known neuro-biological properties. This can test neuro-
biological theories, but it can also draw inspiration from
these theories to develop more sophisticated AI systems.
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