
Questions Arising from a Proto-Neural Cognitive Architecture

Christian Huyck and Emma Byrne
Middlesex University, UK

c.huyck@mdx.ac.uk

Abstract

A neural cognitive architecture would be an architecture
based on simulated neurons, that provided a set of mecha-
nisms for all cognitive behaviour. Moreover, this would be
compatible with biological neural behaviour. As a result,
such architectures can both form the basis of a fully-fledged
AI and help to explain how cognition emerges from a collec-
tion of neurons in the human brain. The development of such
a neural cognitive architecture is in its infancy, but a proto-
architecture in the form of behaving agents entirely based
on simulated neurons is described. These agents take natu-
ral language commands, view the environment, plan and act.
The development of these agents has led to a series of ques-
tions that need to be addressed to advance the development of
neural cognitive architectures. These questions include long
posed ones where progress has been made, such as the bind-
ing and symbol grounding problems; issues about biologi-
cal architectures including neural models and brain topology;
issues of emergent behaviour such as short and long-term
Cell Assembly dynamics; and issues of learning such as the
stability-plasticity dilemma. These questions can act as a road
map for the development of neural cognitive architectures and
AIs based on them.

Introduction
According to Newell, a unified theory of cognition is a “sin-
gle set of mechanisms for all of cognitive behavior” (Newell
1990). This will be expressed by a cognitive architecture,
the largely stable structure that directs the process of cogni-
tion and learning.

In order to derive this unified theory, models of these
mechanisms are required. Thanks to the diligent efforts
of neuroscientists, there is an understanding of the struc-
ture and function of the neuron. From the patient work of
psychologists, there is a good understanding of many as-
pects of human cognition. What is lacking is an understand-
ing of how human cognition arises from the, on average,
130 billion neurons in the human brain, and the 150 tril-
lion synapses in the neocortex alone (Saver 2006). How,
for example, does a set of neurons make it possible to lo-
cate the source of an itch to a mosquito alighting on one’s
foot? How do these or other neurons make it possible to
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reach out and swat that same mosquito? The answer to these
questions requires a neural cognitive architecture: a largely
stable structure that explains the process of cognition and
learning in terms of the underlying neural substrate. There
is no existing neural cognitive architecture, based on human
or simulation-based studies, that follows Newell’s definition.

How, then, to build a model that bridges the gap be-
tween the, admittedly partial, understanding of how neurons
function and the, admittedly partial, understanding of cogni-
tion? The knowledge required to bridge this gap is not eas-
ily accessible via existing investigatory techniques in neu-
roscience. Arrays of implantable electrodes used in primate
research can record the spiking behaviour of up to 128 neu-
rons in a living subject (Kipke et al. 2008), thus revealing
some of the picture. But these 130 neurons are equivalent to
a billionth of the neurons in the human brain. Furthermore,
because of the physical constraints of the recording devices,
these neurons must be close neighbours. This makes it im-
possible to model concerted activity among many neurons
over even quite small cerebral volumes.

Useful neural cognitive architectures are therefore more
likely to arise from in silico models that allow the derivation
and testing of alternative hypotheses regarding the connec-
tion between neurons and behaviour. Such a model would
have a two-fold purpose: firstly, it would allow examina-
tion of which patterns of neural activity are consistent with
which behaviour, at the level of the individual neuron, the
level of the network as a whole and all levels of granularity
in between. Secondly, it would provide an easily simulated
biological unit for the design and development of artificial,
intelligent agents.

A better understanding of the neural cognitive architec-
ture of humans will enable the implementation of interesting
and eventually full-fledged Artificial Intelligence. This de-
pends on a basic unit of computation, the neural model, but
more importantly the units must then be combined so that
cognitive behaviour emerges from the simple behaviour of
those units interacting with each other and the environment.
Unlike biological systems, these simulated systems can be
inspected in minute detail with current technology. This in-
spection supports a method of refinement that can iteratively
lead to improved neural cognitive architectures.

This leaves an important question: what should a neural
cognitive architecture look like? The authors propose that



a neural cognitive architecture should be able to model the
biology of neurons at least at the level of the spiking be-
haviour of individual neurons. There is still much detail that
the spiking model obscures. For example, the effects of dif-
ferent neurotransmitters, or of the length and thickness of
axonal fibres, is subsumed in the spiking model, and the re-
sulting spiking rates and timings are all that is modelled.
However, this abstraction is useful in that no details of the
rate, timing or synchronicity of neuron firing are lost, and a
degree of simplicity, which allows the simulation of 100,000
neurons on a desktop PC in real time, is gained. It is this ap-
proach that the CABot model adopts.

CABot, described below, is one attempt to develop an
agent that bridges the neuro-cognitive gap: model neurons
are connected in a network of cell assembles in order that
the agent is able to carry out a set of behaviours. The de-
velopment of agents like CABot, which are based on proto-
neural cognitive architectures, is leading toward a better un-
derstanding of the neuro-cognitive gap.

CABot aside, some other precursors to neural cognitive
architectures exist (e.g. (Rolls 2008; O’Reilly 1996)), but
no single set of neural theories explains cognitive behaviour
sufficiently to be called a cognitive architecture. Of course,
the same can be said of all existing models including popu-
lar architectures such as ACT (Anderson and Lebiere 1998);
for instance, ACT does not provide a mechanism for sens-
ing, and ACT models that use sensing bolt on some mech-
anism. These architectures do, however, provide evidence
and a means of testing hypotheses about an, as yet to be de-
veloped, cognitive architecture.

The precursors to neural cognitive architectures are rel-
atively new compared to symbolic cognitive architectures,
and many questions need to be resolved. Below, four cate-
gories of questions are explored. Firstly, long posed ques-
tions where progress has been made such as the binding
and symbol grounding problems. Secondly, biological ar-
chitecture issues including neural models and brain topol-
ogy. Thirdly, issues of emergent behaviour, and fourthly,
issues of learning.

These questions have arisen during the development of
Cell Assembly roBots (CABots). These are agents that
function in a virtual environment, take natural language
commands, view the environment, and implement plans.
The agents are implemented entirely in simulated fatiguing
Leaky Integrate and Fire (fLIF) neurons (Huyck 2007).

Aside from a functioning agent that can parse, plan and
see, the work on CABot has exposed a set of questions about
neural cognitive architectures in general and the CABot
model in particular. The answers to these questions will be
future steps towards a neural cognitive architecture. This pa-
per presents these questions in the hope that the reader might
be inspired to derive some solutions to the problems the au-
thors have encountered. First, however, is a brief description
of the CABot agents.

CABots
The central hypothesis of the authors’ research is that the
best way to develop an AI is to closely follow the hu-
man model. This includes developing agents that behave

in a dynamic 3D environment, that correspond to psycho-
logical constraints (cognitive architecture), and that cor-
respond to known neural data. Two early versions of
the Cell Assembly Robot (CABot1 and CABot2) have
already been developed and CABot3 is nearing com-
pletion. Code and other information can be found at
http://www.cwa.mdx.ac.uk/CABot/CABot.html.

All three agents are based in a simple 3D game environ-
ment. They view the environment, maintain simple plans,
perform actions, and accept natural language commands
from the user, who has direct control of their own agent in
the environment. CABot1 (Huyck 2008) does this entirely
with simulated neurons. Vision follows a known subset of
retinal and primary visual cortex behaviour. In all three
agents, the neural network is divided into subnetworks; in
some cases, like the retina and V1, the subnets correspond
to brain areas, but in other cases they are largely for engi-
neering convenience.

CABot2 extends CABot1 by improving the parser and
providing a means of learning goal action pairings (Belavkin
and Huyck 2008). The parser is a neural cognitive model
of parsing (Huyck 2009a). CABot2 does have some minor
symbolic hooks, but is almost entirely implemented in fLIF
neurons. CABot3 extends CABot2, working in a more com-
plex environment, and integrating texture recognition into
the visual system. It also incorporates a simple form of spa-
tial cognitive mapping (Huyck and Nadh 2009). CABot3,
like CABot1, is implemented entirely in simulated neurons.
A variant of CABot2 is a cognitive model of the proba-
bility matching phenomenon in a classical two-choice task
(Belavkin and Huyck 2009).

These CABots have limited learning capabilities. The au-
thors’ research group plans to focus upcoming efforts on
extending and generalizing learning (see the Questions on
Learning section).

Newell (Newell 1990) talks of a single unified explanation
for all cognitive behaviour. However, there remain several
questions in the light of Newell’s definition. For example,
what might the characteristics of a unified neural cognitive
architecture be? What is a viable definition of “all cogni-
tive behaviour”? If a model encompasses the whole of any
defensible definition of “all cognitive behaviour” is it then
acceptable as a unified neural cognitive architecture? Are
there multiple plausible architectures at different levels of
granularity?

Whilst the eventual aim of the CABot project is to de-
vise such an architecture, this aim is, as yet, far from be-
ing achieved. However, CABot agents are incomplete neu-
ral cognitive models that allow the examination of the link
between neurons and some types of cognition. In the cur-
rent case, CABot models the emergence of symbol ground-
ing behaviour from networks of Cell Assemblies built from
component fLIF neurons, in response to visual and natural
language input.

It is the aim that such partial models based on the CABot
framework will eventually be combined to build a complete
and unified neural cognitive architecture.



Progress on Long-Standing Questions
The study of neural behaviour and AI is not new. Many
questions have been asked before and some progress has
been made. Two important issues are variable binding
(Fodor and Pylyshyn 1988; Jackendoff 2002) and symbol
grounding (Harnad 1990).

The variable binding question involves the use of vari-
ables in neural systems; roughly a variable is assigned or
reassigned a value. This task is easy for von Neumann archi-
tectures where variable instantiation is a primitive. Recent
work in this area gives hope that building cognitive architec-
tures based on neural models can be done. Several solutions
have been implemented including binding by synchrony
(Malsburg 1981), binding by active links (van der Velde and
de Kamps 2006), and binding by short-term synaptic change
(Huyck 2009b). So, it is clear that binding can be done in a
neural system. However, the questions of how and when the
brain actually binds are still open.

Similarly, progress has been made on the symbol ground-
ing problem. The problem can roughly be defined as how
does the brain learn the meaning of a symbol? Steels points
out that the problem has been solved, meaning that sym-
bols have been learned by simulated neural systems (Steels
2007). While it has been shown that symbols can be learned,
it remains to be shown all the ways that symbols are learned,
or how all symbols are learned. Symbol grounding is im-
portant, because there has been a great deal of research on
symbolic AI. Unfortunately, these symbolic systems are not
well linked to a real world, and tend to be brittle. It is hoped
that effectively grounding symbols via experience with a
real world will make them much more effective (Kaplan,
Weaver, and French 1990), and allow much more effective
AI systems.

Indeed, this is a fertile and important area. Humans ac-
quire concepts over a long period of interaction with the en-
vironment. A particularly complex set of symbols involve
words, and almost all humans manage to learn a language
and thousands of words. Other animals also acquire con-
cepts. However, computational systems currently do not do
a very good job of concept acquisition. While certain con-
cepts can be learned in limited circumstances, progress has
been slow on any particular system grounding a large num-
ber of concepts from the environment. The main issue is
how can symbols be grounded effectively and generally?

The progress on variable binding and symbol grounding
forces a change in the way questions are asked. It is not a
question of whether neurons can do these tasks, but becomes
a question of how a single system can effectively implement
and use symbol grounding and variable binding to behave
more effectively; and a question of how biological systems
do these tasks.

Questions about Biological Models
When modelling biologically inspired cognition, what is a
good basic unit of computation? How does research based
on one type of unit inform research based on other units?

The authors argue that a neuron is a good basic unit of
computation. There is extensive evidence about how they

perform and it is reasonably easy to get more information
about single neuron behaviour. Large populations of model
neurons can be simulated in real time.

fLIF neurons are a sound model, and while the authors
hope others will use the model, it is neither expected nor
hoped that all other researchers will base their work on fLIF
models.

A standard comment in the 80s and even today is that neu-
rons are too complex to understand, and research should
instead concentrate on non-neural connectionist models
(Smolensky 1988). These comments have helped to lead to
a range of mechanisms that may help develop understand-
ing of neural processing. However, it is far from clear how
these models map to biological reality. For instance, what
do Self Organising Maps (Kohonen 1997) say about neural
processing? For each non-neural connectionist model, there
is at least one question about how this model informs neural
cognitive architectures.

Even focusing on models of neurons, there are a range of
questions. All models are incomplete, and are limited to a
particular level of temporal or spatial granularity of the phys-
ical world. Even complex compartmental models of neurons
(Hodgkin and Huxley 1952) are imperfect. Moreover some
models are so complex that they cannot be simulated in real
time for even a single neuron, and a vast number of neurons
are needed to perform cognitive behaviours. Consequently,
simpler models are important with the Leaky Integrate and
Fire (LIF) model (Maas and Bishop 2001) being used by
many researchers. Even within LIF models there are a range
of models with different time granularities incorporating dif-
ferent behaviours. All of these models tell us something, but
there are a range of questions on how information from one
model can be used by other models.

The purpose of a model is to offer a simplified view of a
complex system. For a successful model, this will be at a
level of granularity that is necessarily less complex than the
original system, but that is faithful enough that predictions
can be made concerning, and generalities extracted from, the
original system. With simpler models of neurons that can
be efficiently simulated, it becomes possible to examine be-
haviour emerging from suites of neurons. The fLIF model
is sufficiently simple that 100,000 of them can be simulated
in real time on a desktop PC, but fine grained enough that
questions can be posed about the relationship between as-
semblies of real neurons and behaviour. The CABot model
encompasses many levels of cognition but poses the chal-
lenge: given this level of granularity, how can substantially
more than 100,000 neurons be simulated in real time?

Another set of questions involves types of neurons. Much
simulation work has assumed that all neurons are roughly
the same. However, biologists note radically different be-
haviour between classes of neurons. Which classes of neu-
rons are important, and how do they interact?

Finally, a great deal is known about brain topology, from
static tissue analysis and imaging data via, for instance,
fMRI, but, this evidence is just suggestive. While connec-
tivity is important, as is brain activity under certain condi-
tions, neither is conclusive. Wiring diagrams are incomplete
and difficult to understand; brain areas may be involved in



one task, but also involved in other, seemingly, unrelated
tasks; and even understanding of the execution of known
tasks is far from complete. Mapping brain areas, laminar ar-
chitecture and biological neural types to cognitive behaviour
leaves a range of unanswered questions.

Questions on Emergent Behaviour
One of the problems facing neuro-biology is that it is diffi-
cult with current techniques to effectively measure the fine
grained behaviour of a large number of neurons. So it is
difficult to see how complex cognitive behaviour emerges
from behaving neurons. This is further complicated by the
long time scales over which biological neural systems, those
of human and other animals, develop. Computational mod-
elling is ideally situated to address the behaviour of a large
number of neurons over a long period.

The questions here become much closer to those asked
by traditional cognitive architectures. How do particular be-
haviours emerge from the behaviour of individual neurons?
Many emergent algorithms have been proposed leading to a
range of exploration. Perhaps the most important is the Cell
Assembly.

One long-standing hypothesis about emergent behaviour
is the Cell Assembly hypothesis (Hebb 1949), stating that a
group of neurons with high mutual synaptic strength is the
neural basis of all concepts. This assembly emerges from
interaction with the environment via Hebbian learning, and
thus accounts for memory acquisition and short-term mem-
ory. There is a wide range of biological evidence supporting
this hypothesis (e.g. (Abeles et al. 1993)), and much exist-
ing research depends on it.

For example, there is research showing how novel cat-
egorizers are learned for visual stimuli in simulated neu-
rons arranged like biological brain areas (Knoblauch et al.
2007). While a great deal of research depends on Cell As-
semblies (e.g. (Amit 1989)), existing models of them are
weak. As assemblies are the neural basis of psychological
concepts, they should behave like psychological concepts,
yet most models are more or less binary. These memories
either exist or do not, are active or are not, are associated or
not. On the other hand, psychological long term memories
have a wide range of states from formation through loss;
short term memories can be more or less active; there are
a range of types and strengths of association between con-
cepts; and both short and long term memories have particu-
lar behaviours over time. How can model assemblies behave
like psychological memories? The authors plan to work on
these types of question soon.

It should be noted that most Cell Assemblies in the
CABots are orthogonal; that is, they do not share neurons.
This has largely been for engineering convenience and other
related work has used overlapping assemblies (Huyck 2007).
It seems likely that most assemblies in the biological brain
are not orthogonal, with neurons instead shared by assem-
blies both for the purpose of sharing information and in-
creasing capacity. One stream of research that works in
highly overlapping assemblies revolves around spin-glass
models (Hopfield 1982; Amit 1989), which make use of Sta-
tistical Mechanics. Unfortunately, this work is mainly based

on well-connected systems that are biologically unrealistic.
A slightly better graph theoretical model (Valiant 2005) uses
random connectivity, though random connectivity is also bi-
ologically unrealistic. Using small world topologies (Bull-
more and Sporns 2009), or direct mappings from biology
would be a better approach for initial connectivity. Learn-
ing would then be used to set the synaptic weights. The
questions that need to be addressed are: What topologies are
appropriate and when? How do the initial topologies affect
the eventual system?

Cell Assemblies are an ill-defined concept, but they
should be able to interact to form more complex structures.
For example, humans seem to have rules (with or without
variable binding); how do assemblies interact to implement
and learn these rules? Humans, and other animals, seem to
have more complex structures like cognitive maps; how do
they emerge from neurons in collaboration as assemblies?

While Cell Assemblies are long-standing, other emergent
algorithms exist. One model of the thalamacortical and cor-
ticostriatal system (Granger 2006) shows how a system gen-
erates more and more precise categories for an input.

Environmental feedback can be incorporated into learn-
ing using neural mechanisms (Belavkin and Huyck 2008).
Here interaction with the environment in terms of positive
and negative reinforcement can be used to resolve the ex-
ploration exploitation dilemma. Separate simulated neural
subsystems interact to support this behaviour.

Even work on distribution of knowledge and processing
for the frame problem (Shanahan and Baars 2005) is a type
of emergent algorithm. Here complex behaviour, resolving
the frame problem, is done via simple processors.

There is also an interaction between lower order feature
detectors and higher order categorisers. They interact via
feedback, but this mechanism is not well understood. How
do different sensory brain areas interact to allow the effective
development of categorisers?

At this stage, most of these emergent algorithms (Cell As-
semblies aside) have very weak biological neural fidelity.
This allows exploration of a wide range of possible algo-
rithms, but the lack of biological support makes it more dif-
ficult to find the algorithms that are needed.

Questions in this area include: what are the correct emer-
gent algorithms? How do they emerge from neural be-
haviour? How do they interact with each other?

Questions on Learning
One of the things that has been shown by the CABots is that
any process can be implemented with a set of simulated neu-
rons based on a relatively simple neural model. Most of the
above questions are a modified version of the question: how
do neurons implement a particular behaviour? This over-
looks one of the key benefits of neural systems: their ability
to learn. Questions about learning abound!

Unlike variable binding and symbol grounding, the au-
thors are unaware of a solution to the long-standing stability-
plasticity dilemma (Carpenter and Grossberg 1988). How
can a system retain old knowledge yet learn new things?
This is linked to psychological behaviour where some mem-



ories are retained and others lost, but some memories (e.g.
riding a bicycle) are never lost even if unrehearsed.

However, neurally there seems to be no sound answer. In
typical simulations, learning is turned on, then later turned
off for testing performance. Even with symbolic archi-
tectures like ACT (Anderson and Lebiere 1998) and Soar
(Laird, Newell, and Rosenbloom 1987), when learning is
left on, there is degraded performance (Kennedy and Trafton
2006). In the brain, neurons are plastic for their entire ex-
istence. It is not even clear if synaptic weight changes (i.e.
long-term potentiation and depression) are permanent. Per-
haps this problem can be addressed by a combination of at-
tractor dynamics, and interaction with the environment. Still
no satisfactory solution has been shown to work.

While resolving the stability-plasticity dilemma is com-
plex, a relatively straightforward question is how are synap-
tic strengths modified? It is widely, but not universally,
agreed that this involves Hebbian learning, but within that
there are a range of possible rules; which rule or rules are
correct? This is an active area of biological research and in-
cludes long and short-term potentiation and depression. Still
no simple answer is on the horizon and the questions are
complicated by the wide range of neural types and presenta-
tion mechanisms.

One particularly irksome question involves learning be-
yond directly stimulated sensory areas. Given Hebbian
learning, neurons must co-fire to gain mutual synaptic
strength. As most neurons are not directly stimulated by
the senses, how can they ever gain synaptic strength from
those neurons? That is, how can higher order brain areas
ever gain activation in the first place? Spontaneous activa-
tion may play a role here (Huyck and Bowles 2004), but the
question is not well answered.

Related questions also involve neural and synaptic death
and growth. These occur throughout life, but it is not clear
how they affect performance.

Learning combined with activation leads to a complex
system that has, at least, dual dynamics. This problem is
not novel having been raised by Hebb (Hebb 1949). The
simplest problem revolves around Cell Assembly forma-
tion. Learning (the long dynamic) requires firing (the short
dynamic), but a Cell Assembly must fire before it can be
learned. The initial firing is caused by environmental stim-
uli, so the problem is reduced. Still questions about the in-
teractions of the dynamics are still open.

Hebbian rules are generally used to learn new categories,
but there are other types of psychological memories. For
example, how are episodic memories learned and when are
items forgotten? Again the question is not whether a neu-
ral system can do this. The question should be how a sin-
gle system can effectively learn and use episodic memories
along with all other necessary mechanisms to behave more
effectively? The same question must be asked about how
production rules or grammar rules are learned?

There has been a vast amount of research on learning
in general, and biologically plausible learning in particular.
While progress has and is being made, learning is at the cen-
tre of neural cognitive architectures. These questions are of
utmost importance.

Conclusion
By following the human neural and cognitive architecture,
developing a better understanding of these, and implement-
ing simulations based on these, better AI systems can be
developed. The authors’ research group has developed a
proto-neural cognitive architecture that has been used in the
implementation of virtual simulated agents. The develop-
ment of this architecture and these agents has led to a range
of questions. The preceding sections have discussed many
of these.

Many of the questions have been relatively broad. For
focus, seven questions, arranged from specific to general,
are presented.

1. How can more neurons be simulated in real time? Possi-
ble answers include neural hardware (Khan et al. 2008)
and distributing processing across machines.

2. What properties do fLIF neurons not have that are re-
quired for some intelligent behaviour? The fLIF model
is relatively simple. Are there aspects that it does not
account for that are necessary for any intelligent be-
haviour? Possible examples include ion capacity and glia
behaviour.

3. How do specialised areas interact with other areas? There
are specialised subnetworks in the topology of CABot that
simplify the analysis of the model. How can this division
into subnetworks be used as a way of understanding the
way in which real brain areas cooperate and communi-
cate?

4. How can Cell Assemblies behave like psychological
memories? The authors hope this can be resolved via
slight modifications to the neural model, slight modifica-
tions to the learning rule, a better understanding of the
dual attractor dynamics, and a larger numbers of neurons.

5. What is a good test for a neural cognitive agent? This is
both a specific question (what test next?), and a general
one (is the Turing test enough?).

6. How can new knowledge be learned while old knowledge
is retained (stability-plasticity)? There are many ways to
avoid this dilemma, but solving it will radically further
the understanding of neural processing.

7. What are the actual mechanisms to resolve these problems
and how do they interact? As stated in the Progress on
Long-Standing Questions section, it is important how it
is done biologically. This includes how different systems,
which have been artificially separated by researchers, in-
teract.

By existing and behaving in an environment, a system is
forced to adhere to a broad range of constraints, that bio-
logical intelligent agents face. Forcing further neural and
cognitive constraints on that agent, places it in a part of a
huge (probably infinite) dimensional space that humans in-
habit. This is the only portion of that space that is known to
exhibit intelligent behaviour (that of humans).

The authors feel that developing neural agents is an ex-
cellent way to advance AI, and we encourage others to do
so. Even for those not pursuing this method, it is hoped that



the questions raised in this paper will provide some pointers
for a road map for the development of these types of neural
cognitive architectures, and AIs built around them.
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