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Abstract
CABot3, the third Cell Assembly roBot, is an agent
implemented entirely in simulated neurons. It is
situated in a virtual 3D environment and responds
to commands from a user in that environment. It
parses the user’s natural language commands to set
goals, uses those goals to drive its planning sys-
tem, views the environment, moves through it, and
learns a spatial cognitive map of it. Some systems
(e.g. parsing) perform perfectly, but others (e.g.
planning) are not always successful. So, CABot3
acts as a proof of concept, showing a simulated neu-
ral agent can function in a 3D environment.

1 Introduction
CABot3, the third Cell Assembly roBot, is a video game
agent implemented entirely in simulated neurons. It assists
a user in the game: viewing the 3D environment; processing
natural language commands; making simple plans; and mov-
ing through, modifying, and learning about the environment.

As its name suggests, CABot3 makes extensive use of Cell
Assemblies (CAs), reverberating circuits of neurons that are
the basis of short and long-term memories [Hebb, 1949].
CABot3 represents symbolic knowledge in a neural network
by CAs. Simple rules are implemented by simple state transi-
tions, with a particular set of active CAs leading to the activa-
tion of a new set of CAs, and complex rules are implemented
by variable binding combined with state transitions.

CABot3 is a virtual robot that creates and uses plans with
a neural implementation of a Maes net [Maes, 1989], while
natural language parsing is based around a standard linguistic
theory [Jackendoff, 2002]. All agent calculations are done
with Fatiguing Leaky Integrate and Fire (FLIF) neurons (see
Section 2.1) and some of the network structure can be related
to brain areas (see Section 4.2). The agent learns a spatial
cognitive map of the rooms in the video game.

Two components of the CABots have been evaluated as
cognitive models. The Natural Language Parser [Huyck,
2009] parses in human-like times, creates compositional se-
mantic structures, and uses semantics to resolve prepositional
phrase attachment ambiguities. It also learned the meaning of
the verb centre from environmental feedback, closely related
to a probability matching task [Belavkin and Huyck, 2010].

2 The Structure of CABot3
Due to space constraints, a complete description of
CABot3 is not possible, though an almost complete de-
scription of an earlier version, CABot1, is available
[Huyck and Byrne, 2009], and the code is available on
http://www.cwa.mdx.ac.uk/cabot/cabot3/CABot3.html. A
brief description of the neural model is described next, fol-
lowed by a description of the subnetworks used, and a brief
description of how those subnetworks are connected to gen-
erate CABot3’s functionality.

2.1 FLIF Neurons
FLIF neurons are a modification of the relatively commonly
used LIF model [Amit, 1989]. When a neuron has sufficient
activation, it fires, and sends activation to neurons to which
it is connected proportional to the weight wji of the synapse
from the firing pre-synaptic neuron j to the post-synaptic neu-
ron i. That weight can be negative. The simulations use dis-
crete cycles, so the activation that is sent from a neuron that
fires in a cycle is not collected by the post-synaptic neuron
until the next cycle. If a neuron fires, it loses all its activation,
but if it does not fire, it retains some, while some activation
leaks away (decay); this is the leaky component and is mod-
elled by a factor D > 1, where the activation is divided by
D to get the initial activation at the next step. In CABot3,
activation of neuron i at time t, Ait is defined by Equation 1.
Vi is the set of all neurons that fired at t− 1 connected to i.

Ait =
Ait−1

D
+

∑

j∈Vi

wji (1)

Additionally, FLIF neurons fatigue. Each cycle they fire
the fatigue level is increased by a constant, but when they do
not fire, the fatigue level is reduced by another constant, but
never below 0. The neuron fires at time t if its activity A
minus fatigue F is greater than the threshold, see Equation 2.

Ait − Fit ≥ θ (2)
FLIF neurons are a relatively faithful model of neurons,

though are relatively simple compared to compartmental
models [Hodgkin and Huxley, 1952]. If each cycle is con-
sider to take ten ms., it has been shown that 90% of the spikes
emitted fall within one cycle of the spikes of real neurons on
the same input [Huyck, 2011]. Aside from their biological
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Figure 1: Gross Topology of CABot3. Boxes represent sub-
ystems of subnets. The oval represents the environment.

fidelity, another benefit is that 100,000 FLIF neurons with a
10ms cycle can be simulated in real time on a standard PC.

Neurons are grouped into CAs, either manually by the de-
veloper, or through emergent connectivity. A given neuron
may be part of one or more CAs.

2.2 SubNetworks
The FLIF neurons in CABot3 are grouped into 36 subnet-
works. Each subnet is an array of neurons, and each may
have different FLIF parameters and learning parameters, in-
cluding no learning. In CABot3, connectivity within a subnet
is always sparse, but it varies between subnets; this connectiv-
ity may have some degree of randomness, but in some cases
it is tightly specified by the developer to guarantee particular
behaviour. Subnets may also be connected to each other with
neurons from one sending synapses to others; these types of
connections vary similarly. These reflect differences, possi-
bly caused in part by genetics, between different types of bi-
ological neuron.

Apart from biological fidelity, another advantage of sub-
nets is that they facilitate software engineering. Tasks can be
partitioned, with one developer working on one net or a set of
nets for a particular subsystem. Communication with other
subsystems may take place via only one subnet allowing a
degree of modularity1.

2.3 Gross Topology
CABot3 can be divided into a series of subsystems each con-
sisting of subnets (Figure 1. Arrows show directed connec-
tions from one subsystem to another, each, aside from the
game, representing a large number of synapses. Verb learn-
ing is not tested in CABot3, thus the connection is represented
with a dotted line and is omitted in later diagrams. Also, for
clarity in later diagrams, due to the prevalence of connec-
tions from control, connections from the control subsystems
to other subsystems are omitted.

The basic subsystems are described below. Section 3.1 de-
scribes the game and the control subsystem; the game re-
ceives simple commands from the agent. Section 3.2 de-

1Note this modularity may conflict with actual brain topology.

scribes the vision subsystem; 3.3 the planning subsystem, 3.4
the natural language processing (NLP) subsystem, 3.5 verb
learning, and Section 3.6 describes the spatial cognitive map
learning subsystem. Connections between the subsystems are
also described in these sections. Section 4 summarizes the
evaluation of CABot3.

3 Subsystems
Each subsystem is explained below, concentrating on those
that have not been explained elsewhere.

3.1 Communication, Control and the Game

The game was developed using the Crystal Space [Crystal
Space, 2008] games engine. It is a black and white 3D envi-
ronment with an agent, a user, four rooms connected by four
corridors, and a unique object in each room (see Figure 4);
the objects were vertically or horizontally striped pyramids
or stalactites (down facing pyramids). The agent and user can
move around the rooms independently. The game provides
the input to the vision system using a dynamically updated
picture of the game from the agent’s perspective. The user
issues text commands as input to the NLP system. The game
also has a bump sensor, and this ignites a CA in the fact sub-
net in the planning system (see Section 3.3) when the agent
bumps into a wall. Similarly, the game takes commands from
the agent’s planning system to turn left or right, or move for-
ward or backward.

The control subsystem consists of one subnet, the control
subnet, which in turn consists of five orthogonal CAs2. These
CAs mark the state of the agent, either parsing or clearing a
parse, setting a goal or clearing it, or a stub. The initial state
is turned on at agent start up, and one state is always on.

In the first state, the system is waiting for input or parsing
a sentence. This state has connections to most of the NLP
subnets to facilitate the spread of activation. When the last
grammar rule ignites, it forces the control state to move on.

Most of the CAs involved in parsing, and planning, and all
of the control CAs are orthogonal oscillators. When active,
they oscillate from having one half of the neurons firing to
having the other half firing, then back to the first set. This
allows the CA to avoid fatigue as its neurons only fire half
the time. This is not biologically accurate, but enables precise
behaviour with relatively few neurons.

When it has finished parsing, control moves to the clear
parse state. This changes the instance counters in the NLP
subsystem preparing it for the next sentence. After a few
steps, activation accumulates in the set goal state causing it
to ignite, and suppress the clear parse state.

In the third state, the goal in the planning system is set
from the semantics of the parse via the intermediate goal set
subnet. In the fourth state, information is cleared from the
NLP system after the goal is met, and the fifth is a stub.

The control allows the system to parse while still process-
ing a goal. Vision remains active at all times.

2A neuron in an orthogonal CA belongs to that and only that CA.



3.2 Vision
The visual system of CABot3 consists of six subnets: visual
input, retina, V1, gratings, V1Lines, and object recognition.
The retina, V1, gratings, and V1Lines share some similari-
ties with their human counterparts, but are much simplified
models. Higher-level object recognition in CABot3 is not bi-
ologically plausible and does not mimic known mechanisms
in the human visual system. It does however carry out two
important functions of the visual system: the simultaneous
identification of what is seen and where it is in the visual field.

The visual input, retina, V1 and object recognition nets
have been described elsewhere and are only slightly modi-
fied [Huyck et al., 2006]. The most important modification
is the addition of grating cells that mimic known properties
of the primate visual system, in that they respond selectively
to textures of a certain orientation and frequency [DeValois et
al., 1979].

The visual input subnet is a 50x50 network of FLIF neu-
rons that do not fatigue. Input to this subnet is clamped to the
external stimulus, thus activation is constant until the agent’s
point of view changes. Each neuron in the 50x50 subnet cor-
responds to an identically located ”cell” in a 50x50 grid of
light levels from the environment.

The CABot1 retina subnet contains six 50x50 grids of FLIF
neurons. Each subnet contains retinotopic receptive fields of
a single size and polarity: 3x3 receptive fields with single-
cell centre; 6x6 receptive fields with a 2x2 cell centre and
the 9x9 receptive fields with a 3x3 cell centre. For each of
these sizes there is a subnet with an on-centre/off-surround
polarity (neurons fire when the centre of the receptive field
is stimulated and the surround is not) and an off-centre/on
surround polarity.

In the V1 area of the human visual system there are neu-
rons, known as simple cells, that are tuned to specific edge
and angle orientations. These simple cells are location spe-
cific. In the CABot3 V1 and V1Lines subnets, FLIF neu-
rons have been connected to replicate this behaviour. V1 and
V1Lines were split for engineering convenience. Weighted
connections feed activation from on-centre and off-centre
cells in the retina subnet. There are eight orientation specific
edge detectors and four angle detectors.

The edge detectors in V1Lines also have recurrent connec-
tions to grating detector subnets. Grating detector cells iden-
tify repeated patterns of edges of a given orientation and fre-
quency. These grating detectors allow CABot3 to recognise
textures in the environment. This allows CABot3 to distin-
guish between objects of the same shape but that are ‘painted’
with different textures.

The object recognition net is the least biologically plau-
sible of the visual subnets. There are five modules in the
subnet, made up of a number of overlapping cell assem-
blies. These specialise to recognise pyramids, stalactites,
door jambs, doors, or unknown objects. The same modules
also carry the “where” (position) as each subnet is a retino-
topic representation of the visual field.

3.3 Planning
The planning system is basically a Maes net [Maes, 1989].
The gross topology is shown in Figure 2. All subsystems link
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Figure 2: Gross Topology of the Planning Subsystem. Boxes
represent subnets.

to the planning subsystem. Its primary entry point is from the
NLP subsystem, which sets the goal. The primary outcome
is to the game; the CAs in the action subnet are polled and a
symbolic command is emitted to the game.

This subnet structure was used throughout CABot1, 2 and
3, and a simple example is the command, Move forward.
When parsing is completed, the control subnet in combina-
tion with the NLP subnets cause an orthogonal oscillating CA
in the goal net to ignite. This is equivalent to a goal being set
in the Maes net. With a simple action, this goal CA causes
the corresponding module subnet CA to ignite, which in turn
causes the corresponding CA in the action subnet to ignite.
The action CA is then polled to emit the command to the
game. Backward inhibition extinguishes the goal and module
CAs, and accumulated fatigue causes the action CA to stop.

Simple movements do not require any facts, but actions are
often predicated on facts that are set by the environment. For
example, an environmentally sensitive command is Turn to-
ward the pyramid. In this case, the vision system ignites a
fact CA expressing the target’s location in the visual field, for
instance, “target on left”. The combination of activity from
the fact net and the goal net cause the appropriate module CA
to ignite, which in turn causes the appropriate action CA to
ignite. This is an example of needing two (or more) CAs ig-
nited to ignite a third. This is done by allowing the activation
of the neurons in the third CA to rise, but which is below
threshold when one CA is ignited. The second CA then pro-
vides enough activation to ignite the third CA.

Note that the full Maes net has a concept of Maes module
activation. In CABot3, the module CAs are either on or off,
and there is no activation level (but see Sections 3.4 and 5).

The system executes 21 commands, four primitives (e.g.
Turn right), two compounds (e.g. Move left which executes
a left then forward), turn toward pyramid or stalactite, go to
seven objects, explore, stop, and move before four objects.
The seven objects are door, and pyramid or stalactite either
(vertically) barred, (horizontally) striped, or unspecified.

Moving to an object may require several steps. CABot3
centres the object in the visual field and then moves to it until
the object fills the visual field, possibly centring again along
the way. Any command can be stopped by the Stop command.

The most sophisticated thing the system does, in response
to the Explore command, is to explore the four rooms and
memorize the objects in the room (see Section 3.6). To test
that the system has correctly memorized the map, a command



such as Move before the striped pyramid may be used. The
system then moves to the room before the striped pyramid and
stops without having seen it again, showing it has memorized
its location (see Section 4.1).

In all, the goal subnet contains 26 CAs, including subgoals.
The fact subnet has 66 CAs, the module subnet seven, and the
action subnet six including two error conditions.

3.4 Natural Language Processing
The stackless parser has been described elsewhere [Huyck,
2009]. Input is provided symbolically from Crystal Space,
each word is associated with an orthogonal set of neurons in
the input net, and they are clamped on when the particular
word is being processed.

The subnets involved follow Jackendoff’s Tripartite theory,
with NLP broken into three main systems, lexicon, syntax and
semantics, and the systems communicate via subsystems.

Stackless parsing is done by activation levels, with the
number of neurons in a CA firing in a cycle reflecting CA
activity. In practice this is done by a tightly specified topol-
ogy that has the number of neurons firing in the CA decaying
over time; activation levels reflect the order of items.

Semantics are handled by overlapping encoding derived
from WordNet. This could be useful in resolving parsing am-
biguities, though this is not implemented in CABot3.

Grammar rule CAs are selected by activation of component
(lexical or higher order category) CAs. Variable binding is
done with short-term potentiation [Hempel et al., 2000], and
this is how instances store their semantics. Noun instances
represent noun phrases and verb instances, verb phrases in-
cluding their arguments. A case frame is generated for each
parse, and the slots are bound to other instances or to the se-
mantics of words. These bindings are learned but decay over
time. The next time they are used, two parses later, the in-
stance frames have been erased by automatic weight decay.

3.5 Motivation and Reinforcement Learning
Hebbian learning strengthens the connections between CAs
as well as within a CA. CAs are associated with some atomic
propositions, and more complex propositions (such as impli-
cation rules) are represented by groups (e.g. pairs) of asso-
ciated CAs. However, Hebbian rules do not differentiate be-
tween learning ‘good’ or ‘bad’ propositions. After several
atomic propositions or symbols have been learnt in the form
of corresponding CAs, the main problem is to learn the cor-
rect or favourable propositions from these.

This problem was solved by a motivational system that is
used to control Hebbian learning so that propositions with
higher utility values or rewards are reinforced [Belavkin and
Huyck, 2008]. The mechanism uses two specialised subnets:
utility and explore. Neurons in the utility network output sig-
nals corresponding to a reward or payoff obtained from the
environment. Neurons in the explore network output signals
that represent random noise and they can be connected to any
set of CAs that needs to be randomised to allow stochastic
exploration of their interrelations. The utility network has in-
hibitory connections to the explore network so that high val-
ues of utility correspond to low level of randomness at the
output of the explore network.
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Figure 3: Subnets involved in spatial cognitive mapping.

It has been demonstrated previously that the mechanism
described above can be used to learn simple sets of rules in a
CA-based architecture [Belavkin and Huyck, 2008], and that
it can be used to model probability matching observed in an-
imals and people [Belavkin and Huyck, 2010]. The mecha-
nism was used by CABot2 to learn the verb centre and the
corresponding action associated with a visual stimulus. It is
unplugged in the currently available version of CABot3.

3.6 Spatial Cognitive Map Learning
Spatial cognitive mapping is the psychological process of
recording, recollecting and acting on locations and objects
in a physical environment [Downs and Stea, 1973]. CABot3
implements a simple version of this complex process based
on the authors’ previous work [Huyck and Nadh, 2009]; the
CABot3 agent explores the rooms, learns the objects, associ-
ations between them, and navigates to specific rooms.

Figure 3 shows the subnets involved. Room1 and room2
encode adjacent rooms that the agent moves through, where
room1 is the prior room and room2 is the current room. The
sequence net encodes the associations between the rooms,
and the objects in them. The counter net supports the order.

On receiving the Explore command, the agent goes around
the environment, room by room, learning the objects it sees.
When an object is in its visual field, for instance a striped
pyramid, the current room in association with it is encoded
as a CA in Room1. The object in view is recognised from
activity in the fact net, and learning lasts 200 cycles as it has
been observed to be the minimum number of cycles required
for CAs to be learnt. When the agent moves to the next room,
the same routine happens, but as it has come from an adja-
cent room, the current room is also encoded in room2. The
previous room CA in room1 is still active, the current room
CA in room2 ignites, and the association between the two
rooms learnt as a CA in the sequence net. Learning in the
sequence subnet happens via co-activation with the two ac-
tive room CAs in the two room nets lasting 200 cycles. This
in essence creates individual CAs representing the rooms and
their constituent objects in the two room nets, and the associa-
tion between the rooms the agent passes through in sequence.
Counter keeps track of the room the agent is currently in.
When the agent is done exploring, room1 and room2 have a
CA associated with the item in the fact net, and the sequence
net has five CAs representing the association between each
room and its adjacent room.

After exploration, when the agent is issued with a com-



mand such as Move before the striped pyramid, the involved
fact such as “striped pyramid” ignites in fact (Figure 2). Fact
in turn ignites the learnt CA in room2 representing the room
with the “striped pyramid”. As the sequence net has encoded
the association between rooms, the active CA in room2 ac-
tivates the associated room in room1, which is the room be-
fore the room in room2 that the agent entered through while
exploring. Thus the agent deduces the target room from its
simple learnt cognitive map. With the target room active, the
agent starts moving, and when it reaches the target room, ac-
tivity in the goal subnet informs it of task completion.

4 Evaluation
The evaluation of a CABot3 agent is a complex process.
Many of the components have been evaluated separately. For
the purposes of testing CABot3 itself, parsing, for example,
consists of a few dozen grammar rules that it uses to parse
all of the acceptable commands correctly, so as to set an ap-
propriate goal. In parsing, all of the connections are deter-
ministic, and the parsing subnets are insulated by layers of
connections from the more stochastic areas.

The evaluation of the planning system and cognitive map-
ping systems are briefly described in Section 4.1. The control
system is a simple finite state automata which switches states
when other systems reach certain states, for example when
the parser finishes, the control state changes. This system
largely switches states when appropriate, but occasional er-
rors do occur, but these are largely self correcting. However,
it occasionally gets into states from which it cannot recover.

The vision system works robustly for a limited range of
textures. There are two orientations and a limited range of
spatial frequencies that the grating cells can accommodate
due to the size and resolution of the retinal nets. Within
these limitations, however, the system identifies textures reli-
ably. Where objects are presented clearly on the retina (that
is, where the viewing angles are not extreme) the visual sys-
tem robustly identifies the objects in the 3D world.

4.1 Explore Evaluation
The planning system is responsible for a relatively wide range
of activities. Most of these it performs entirely correctly; for
example the command Turn left. always works correctly. The
most sophisticated physical task the agent performs is to ex-
plore all of the rooms, making use of vision and spatial cogni-
tive mapping (see Section 3.6). This exploration is relatively
simple though it can take several hundred moves. An example
is shown in Figure 4.

CABot3 initially tries to identify the room it is in by the
unique object it sees. In the case of Figure 4, it sees the striped
pyramid, and this is put into its spatial cognitive map. It then
finds the corridor, which it can see at a distance. It moves
to the front of the corridor keeping to the left edge, stopping
when it bumps into the edge of the corridor. It then turns right
and moves through the corridor along the edge. At the end of
the corridor it turns right to see the object in the next room. It
can see there is an object but the agent is not close enough to
identify it. It moves toward the object, in this case the barred
pyramid, until it can identify it. It then puts that in the cog-
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Figure 4: Forward moves of CABot3 while exploring the
rooms, starting at S with moves marked by dots.

nitive map, and repeats the process for the next two rooms,
stopping when it identifies the object in the initial room.

Explore works about half the time. It appears cognitive
mapping works each time, and all of the failures are due to
navigation problems.

4.2 Subnet Evaluation
The subnet topology is important both for software engineer-
ing and for relating to brain areas. From the software engi-
neering perspective, the method has been successful. Break-
ing the full network into subnets has enabled development of
systems to be partitioned with one developer working on one
task, (e.g. vision) in isolation. The systems have then been
combined to work together in the full CABot3 agent.

The brain did not evolve this way, so it is also important
to see how different subnets might map to brain areas. There
is a strong correlation between CABot3’s early vision areas
and biological vision areas, with both accounting for similar
behaviour. There is a looser correlation between the explore
subnet in reinforcement learning and the basal ganglia. How-
ever, in most cases the subnets have little correlation with
brain areas. None the less, the basic subnet topology could
be used to closely mimic known brain area topology and be-
haviour. As subnets still have connections to and from other
subnets, so CABot3 is one large network.

5 Conclusion
Many researchers thought that implementing AI systems with
simulated neurons was too complex (e.g. [Smolensky, 1988]).
Perhaps this was true a few decades ago, but the authors be-
lieve that CABot3 shows that this fear has passed.

The mere implementation of a relatively simple agent
may miss the point that many connectionists hope to make:
that the neural level is not the correct level to study the
brain. While the authors would agree that many complex be-
haviours, such as attractor dynamics and supervised learning,
are being effectively studied with non-neural connectionist
systems, this does not mean that the same problems cannot
be effectively studied in neural systems.

Moreover, simulated neural systems have an important ad-
vantage over connectionist systems when it comes to study-



ing AI: existing intelligent agents (humans and other animals)
use neurons to think, and the neural and cognitive behaviour
of these animals is being studied. Simulated neural systems,
which match sensible intermediate behaviour, can be devel-
oped as milestones on the way to full fledged AI systems.

During the project, it was shown that in general a network
of CAs, and in particular a network of FLIF neuron CAs,
was Turing complete [Byrne and Huyck, 2010]. In some
sense, this makes the implementation of CABot3 unsurpris-
ing. While CABot3 is obviously not a neuron by neuron sim-
ulation of a human brain, it does have a series of links to neu-
robiological and cognitive behaviour that increase its validity.
The base neural model is a relatively accurate if simplified
model of neurons. In CABot3, some subnets are reasonable
approximations of brain areas. The use of CAs for long and
short-term memories and as the basis of symbols is neuropsy-
chologically supported, and provides a bridge between sub-
symbolic and symbolic processing. Cognitive models provide
solid links to psychological behaviour from a neural system.

While it is possible to continue to program new and im-
proved neural systems, the authors believe the key is to have
the system learn its behaviour. Thus, a vast range of fu-
ture work is possible such as: improving existing systems;
adding new sensory modalities, for example sound detec-
tion and speech recognition; moving from virtual to physi-
cal robots; improving the fit with biological data, for example
more neurons, more realistic topologies, and more accurate
neural models; new and more sophisticated cognitive mod-
els; and improving computation, for example by use of spe-
cialised neural hardware. Simulated CAs themselves could
also be improved so that a single CA could be learned, and
persist for an appropriate duration. More radical improve-
ments also present themselves including improved learning,
for example at the CA level and in combination with variable
binding, improved understanding of dual attractor dynamics,
integration of attention, and experiments with agents that con-
tinue to improve over several days or longer.

CABot3 is an agent in an environment functioning in real
time, implemented in simulated neurons. It is a solid step in
the development of agents implemented in simulated neurons,
and it is intended that more sophisticated agents will be de-
rived from it. Building systems like this will involve trade offs
between biological and psychological fidelity, and computa-
tional constraints. By building more biologically and psycho-
logically plausible systems that perform more tasks, signifi-
cant advancements in the understanding of general cognition
can be made.
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