[image: image3.png]

BIS 2040

Knowledge Based Systems

Module Handbook

Semester 1

2003/2004

Dr. Christian Huyck

School of Computing Science

Contents

2Contents

Module Summary/Introduction
3
Introduction
3
Contacting the Module Leader
3
Rationale Including Aims
3
Book Purchase Suggestions
5
Web-based Module Material
5
Coursework
7
Feedback to students on coursework
8
Lecture Plan
10
Laboratory/Seminar Materials
12
Examples of Typical/Previous Examination Paper
63
Exam/Coursework Report on last paper and possibly Marking Scheme
74
Useful Information
75
Feedback to Students on their work/progress
75
Attendance Requirement
75
School Policy on passing all Components of Module
75
Academic Dishonesty
75
Plagiarism
76
Appeals
76
Examples of all Typical/Previous Examination Papers
76
24-7
76

Module Summary/Introduction

Introduction

Welcome to "Knowledge-based systems for business". This course is about symbolic AI in general and building knowledge based systems in particular. In particular we will work with two types of expert systems: rule based systems and case based reasoning systems. Additionally we will talk about knowledge representation and knowledge engineering. You could also read through the notes for lecture 1 below.

Contacting the Module Leader

You can contact your module leader in the following ways:

Office Hours - Room No: M212 Hendon

Times to be determined after handbook publication. (Check the web site below.)

Email

 c.huyck@mdx.ac.uk

Telephone

020 8411 5412

Web pages

www.cwa.mdx.ac.uk/

Rationale Including Aims

Rationale including aims

This module presents knowledge-based systems, the knowledge representation approaches that they depend on, and the knowledge engineering techniques that are used to build them. It provides a thorough understanding of the principles, design, development, and operation of these advice-giving systems, and particularly of expert systems, and an introduction to related artificial intelligence applications.

Learning outcomes

At the end of the module you should be able to:

Knowledge

· describe the nature of expertise.
· describe the nature, and identify the advantages and the disadvantages of knowledge-based systems, and particularly expert systems, as used by commercial and public service organisations.

· explain the working of rule-based systems, and the kinds of inferencing that are used in such systems.

· describe other important knowledge representation formalisms.

· explain the role and the tasks of the knowledge engineer, particularly with regard to knowledge acquisition, and the development of knowledge-based systems.
Cognitive Skills

· extract knowledge structures from transcripts of interviews with experts, and represent this knowledge using recognised formalisms.

· evaluate proposed knowledge engineering projects from the point of view of viability and cost effectiveness.

· decide appropriate rule-based inferencing approaches in particular cases.

Subject Specific Skills

· collect sufficient knowledge to build a small KBS in a particular knowledge domain, and represent it in a way that can be converted into a machine-usable knowledgebase.

· use the expert system shell presented in this course to develop a standalone KBS application.

· manage a software project that involves the development of a standalone KBS application.

Transferable Skills

· write a technical report describing the system that you have built, and the knowledge that has been used to build its knowledgebase.

Teaching and learning strategies

· Theoretical material will be delivered during the weekly lecture

· Weekly supervised laboratory sessions will allow you to learn the software package and put into practice the concepts learnt during the lectures.

Assessment scheme

50% of marks based on an unseen examination, 50% on coursework.

At the end of the course, there will be a 2-hour unseen exam, amounting to 50% of the available marks for the course. The coursework (providing the remaining 50% of marks) will consist of an Kappa PC programming project. See page Error! Bookmark not defined. for details.

Reading materials

The most important reading materials are the lecture notes and workshop notes in this handbook. The core text is:

Jackson, Peter (1998) An introduction to expert systems (3rd edition). Addison Wesley,.

Other text books:

I'm not really happy with the Jackson book, and have been looking around for better ones. Unfortunately they seem to fall into three categories: first they're too sophisticated for this module; second they do not have material on case based reasoning; third they are general AI books. Below is an old list; I have several of these on my shelf and would be willing to lend them out, but they are also in the library.

 Many textbooks have been published in the field of artificial intelligence. My personal favourite is

Artificial intelligence - a modern approach. Stuart J Russell & Peter Norvig, published by Prentice Hall, 2002

It is comprehensive, well written, and (at least as far as the simpler topics are concerned) easy to follow.

However, the subject of this course is Applied Artificial Intelligence and, in particular, knowledge-based systems/expert systems. This is a smaller, more specialised field. The title of books in this field often contain the words “expert systems”, but often they don’t: they may refer to “knowledge-based systems”, “knowledge systems”, “intelligent systems”, or even “intelligent knowledge-based systems” – the difference is usually one of fashion rather then any real difference in content. Once again, a good many books have been published.

I almost switched to A Guide to Expert Systems by Don Waterman, but it did not have anything on case based reasoning.

One of the most long-standing is

Decision support systems and intelligent systems (5th edn). Efraim Turban & Jay Aronson, published by Prentice Hall, 1998

For a set of authoritative essays on all the major issues in expert systems, see

The handbook of applied expert systems. Edited by Jay Liebowitz, published by CRC Press

- a good book to browse in if you want to specialise in this area, though possibly not one that you’d want to buy.

If you’re trying to grasp a concept, and the textbook you’re reading doesn’t make sense, or doesn’t cover it, find another textbook in the library and try that.

Book Purchase Suggestions

You can purchase the Jackson book from the student bookstore, from Amazon, or at many bookstores such as Foyles.

Study hours outside class contact
The total study time for a 20 credit module is 180 hours. Therefore, for a module such as this one which has time-tabled activities of 3 hours per week over a 12 week semester (a total of 36 hours), the out-of-class study commitment for each student is 144 hours, spread over the semester. You should use this to supplement the material covered in the lectures, to complete the exercises set during the labs and seminars, and to practice your skills.

Web-based Module Material

The lecture and workshop notes for this module aren't currently on the web (www.cwa.mdx.ac.uk/bis2040/.
Some relevant web sites

These are old sites (6 Sept '00); sorry I haven't had time to update this.

AIAI Information Services

http://www.aiai.ed.ac.uk/projects/tech.html

A semi-commercial AI research organisation based in Edinburgh. This lists some of their current projects.

AI on the web

http://www.cs.berkeley.edu/~russell/ai.html

Stuart Russell, who produced this site, is one of the authors mentioned in the next section. This site hasn’t been updated since 1998, but is still an impressive collection of 795 links to interesting AI sites.

British Computer Society Specialist Group on Expert Systems

http://www.bcs-sges.org/sges/sges.htm

Home page. Details of their conferences, evening meetings etc.

KBS Group at the University of Texas
 - "Some ongoing KBS/Ontology projects and groups"

http://www.cs.utexas.edu/users/mfkb/related.html

A large number of links on knowledge representation projects, and related work.

National Research Council of Canada
 - "Expert systems and knowledge-based systems"

http://ai.iit.nrc.ca/subjects/Expert.html

A collection of links.

University of Leeds / New technologies Initiative - "WWW Training resources in KBS & SALT"

http://agora.scs.leeds.ac.uk/nti-kbs/subject.html

Another collection of links.

Coursework

The assignment for the module is as follows:
You are to build a Knowledge Based System using Clips, KappaPC, or the Caspian system. It will contain knowledge from a domain of your choosing, and will include rule-based reasoning (either forward chaining, backward chaining or mixed), or case-based reasoning. Approval for your chosen knowledge domain must be obtained from the module tutor, to ensure that the domain is suitable. Your coursework, when handed in, should include a floppy disk containing the finished system.

In past semesters we have made it mandatory that you select your own domains. This was to force you to explore the knowledge engineering issues. While we would prefer you to choose your own domain, we have provided several example domains below; it is unlikely that you will recieve a first class mark if you use these domains, but they should give you an idea of a minimal system.

Marking scheme:

1. The Program Runs (up to 20).

2. Sophistication and Extent of Knowledge Base (up to 25 marks)

3. Extent to which the system performs a useful function (up to 15 marks)

4. Discussion of why this particularly domain is appropriate for the type of expert system you used. (up to 10 marks)

5. Description of the knowledge acquisition process. A sample taken from a published source of the knowledge or an interview transcript are useful. (up to 10 marks)

6. Description of rules or cases and data items (up to 10 marks)

7. Descriptions of "successful" and "unsuccessful" program runs, including sample output. (up to 10 marks)

Some notes on the above marking scheme:

· "Extent to which the system performs a useful function" - a trivial application will get less marks than an application that someone (in the real world) might actually get some benefit from. Also, marks may be deducted for lack of validity in the knowledgebase: in other words, if relevant features of the domain knowledge have been ignored, or distorted, or invented, in the process of turning them into components of the knowledgebase, this may result in loss of marks.

· "The extent of the knowledgebase" - a knowledgebase containing, say 8 rules, will get rather poor marks in this category (10 marks). One containing, say, 24 rules will get rather high marks (18), assuming the rules are useful. Beyond a certain point, however, no more marks will be awarded, so it is not worth devoting time to producing an enormous rule base. Also note that one rule can do the work of several other rules. This is reflected in the sophistication of the rule base.

· "The sophistication of the knowledgebase". Partly, this is the extent to which the features of the package are employed to produce an effective reasoning system. But it is also true that a more ingenious or original system will obtain more marks than a less ingenious or original system.

· "Description of rule or cases and data items" - I want a chart describing the knowledge, and the reasoning that it supports. For example an and-or chart for a backward chaining system, but you may choose another form of representation if you feel it to be more appropriate.

· Deadlines

Project domain approval 20th October 03

Project prototype demonstration November 10th 03

Project handed in to Student Office December 5th 03

Where to submit

· Clips or Kappa Projects

1. Tic-Tac-Toe

2. Plant Identification

3. Bag Packing

4. MS Word Ruler Help Desk

· Clips Projects

1. Engine Diagnosis

2. Dormitory Assignment

· Kappa Projects

1. Semantic Nets

2. Monkeys and Bananas

· Caspian Projects

1. Gift Selection

2. University Program Selection

3. Bag Packing

There's a sample cover sheet on the next page - feel free to copy it and use it on your assignment, inserting your details. Your assignment, including cover sheet, write-up and program on floppy disk, must be submitted to the student office where it will be dated and receipted. You should keep your receipt - it is for your own protection. Do not hand written assessed coursework direct to your tutor. Your assignment should normally be handed in on the campus at which the module is being taught (e.g. Hendon); if for any reason you have to hand it in at another campus, please point this out to the student office so that it can be sent to the correct campus. If, in an emergency, you have to send in written assessed work by post you must send it by recorded delivery to the appropriate student office and keep the Post Office receipt. It will be deemed to have been submitted on the date of the postmark.

Receipts for work submitted outside opening hours can be collected from the student office.

This is both the main and re-sit coursework.

Feedback to students on coursework

All coursework will be marked and can be picked up from my office. Each disk will have a file called grade.txt on it that will show the mark breakdown and have comments on it.

BIS2040

Coursework

Deadline for Submission

5/December/2003

|

Lab/Seminar Group ID……………………………………..

Seminar Group Leader…………………………………….

Student Name……………………………………………….

Student Number…………………………………………….

Campus:

Hendon

Trent Park

Bounds Green

School of Computing Science

Dr. Christian Huyck

Lecture Plan

Workshop sessions in week no:
Lecture sessions in week no:
Title
Readings. All from Jackson

1 Introduction to Clips
1
Introduction and Overview
Chapter 1 and Section 5.1 and 5.2

2 Chains, side effects etc.
2
Rule Based Systems Architecture and Programming with Rules
Section 5.1, 5.2 and Chapter 4

3 Loops
3
Getting Rules to Work Together
Section 5.3 and Chap. 2

4 Monkeys and Bananas
4
Knowledge Representation and Logic
Section 8.1.1 and 8.1.2

5 Semantic Nets with Clips
5
Semantic Nets
Section 6.1 and 6.2

6 Conflict Resolution
6
Rule Based Systems Examples
Chapter 3

7 Introuction to Caspian
7
Case Based Reasoning
Chapter 22

8 Develop a CBR system
8
Case Based Reasoning Examples

9 Prototype Display
9
Knowledge Engineering
Section 10.1, 10.3.1 and 10.3.2

10
10
Frames and Expertise
Section 6.3

11 course work support
11
Unifying Themes

12 course work support
12
Conclusion and Review

Laboratory/Seminar Materials

BIS 2040 Introductory Lecture

· Welcome

· Course Structure
· Learning Outcomes
· Expert Systems
· Knowledge Representation
· Case Based Reasoning
· Knowledge Engineering
· Programming Expert Systems

· In class exercise

· Conclusion
Welcome to BIS 2040

· I am Chris Huyck.

· My office is M212 in Hendon

· My email address is c.huyck@mdx.ac.uk, and this is the best way to get me.

· This lecture is on my web site (www.cwa.mdx.ac.uk).

· I know loads about Expert Systems and Artificial Intelligence.

· Does anyone want to ask me any questions about ESs or AI?

· I'm also a lab tutor.

· I think AI is interesting, in demand economically, and fun.

BIS 2040 Course Structure

· The exam is worth 50% of the grade, and the coursework is worth 50. You have to pass both to pass.

· The coursework is to design, implement and document an Expert System. It's in the handbook, and at http://www.cwa.mdx.ac.uk/bis2040/coursework.html .

· The course text is Introduction to Expert Systems by Peter Jackson

· As usual, all evaluation will be based on the learning outcomes.

· I give the lectures this semester.

Learning Outcomes

· Expert Systems

· How Rule Based Systems work

· Case Based Reasoning

· Rule Based Shells

· Developing ESs

· Expertise

· Knowledge Engineering

· Symbolic Knowledge Representation

· Logic

· Semantic Nets

· Frames

Expert Systems

· Expert Systems are often called rule based systems. Alternately, they also refer to both rule based and case based systems.

· Rule based systems are made up mainly of a collection of rules.

· Rules are if then else statements

· So that the system works in different cases, it also has working memory (WM).

· WM is input by the user, the rules inspect it, and may modify it.

· The Rule based system itself looks at the WM, and selects rules to apply that are legitimised by the WM.

· If (X bears live young) and (X gives milk) then (X is a mammal)

· Why is this useful?

· How is it different than writing (e.g. Java) code.

Knowledge Representation

· How do you represent knowledge?

· program variables: integers, reals, booleans, characters, strings

· programs

· databases?

· Logic:

· All men are Mortal, Socrates is a Man, therefore Socrates is Mortal

· First Order Predicate Logic is part of this class.

· Functions are important in all of this

· Semantic Nets: hierarchies, part-of, relationships.

· Frames: e.g. the verb hit has an actor slot, an object slot, and an instrument slot.

· These are symbolic ways of representing knowledge. They will be on the exam.

Case Based Reasoning

· CBR is based on a collection of cases.

· You figure out what to do in each case in the collection, you may do the same thing in several cases.

· When a new case comes in, you compare it to the collection.

· You give the advice of a nearby case.

· An example might be a trouble shooting desk. 90% of the queries fall in 10 categories.

· Figure out what category it is in (including the 11th other category), give the appropriate advice, or in the other case, phone a help person.

· This saves 90% of your help person time (after development).

· What would a case look like?

· How do you tell which cases are near to the new case?

Knowledge Engineering

· How do you build systems like these?

· You learn how to build the ESs (rule based and CBR systems).

· You learn how to choose which is best (if either).

· You get the information from the experts.

· I can write an ES for wine selection, but I can't tell you much about wine.

· I need to ask an expert.

· How can you ask? Interviews, reading, prototype evaluation, ask multiple experts.

· This is the process of knowledge engineering.

Programming Expert Systems

· I want to concentrate on programming expert systems.

· Last semester there were very few firsts on the course works, and very few firsts overall.

· None the less, people did well on the implement a Rule Based system, and implement a semantic net exam question.

· Consequently, I'd like to spend more of the lectures talking about implementing systems.

· This ties in with software engineering, but I think programming is a different skill.

· How can you make Clips or Caspian do things?

· The labs concentrate on this programming, but we will also concentrate on programming during lectures.

In class exercise

A firm of wine importers relies heavily on its chief wine expert, who is skilled at selecting wines that are destined to be popular, on the basis of their taste, colour, scent etc. She is soon to retire. It is proposed to build an expert system that will enable any of several junior wine specialists to do her job.

1. Make a rule that would be used in such a system.

2. What is an example of working memory?

3. What is an example of derived knowledge?

4. How would you get the knowledge for the system?

5. Do you think it will work?

6. Why and/or why not?

Conclusion

· The coursework is to implment an ES and is worth 50% and the exam is worth 50%.

· We'll learn about Expert Systems (Rule Based systems and Case Based Reasoning), Knowledge Representation, and Knowledge Engineering.

· It's practical, symbolic AI.

· Who wants to be a student representative for this module?

· What is AI? (It's not on the exam.)

· For next week read Chpt. 1 and section 5.1 and 5.2

· The lab is to get a rule based system running

Rule Based System Architectures and rules vs. structured programming

· Rules Based Architecture

· Inference Engine

· Knowledge Base

· Knowledge Base/Working Memory

· User Interface

· Example

· Answer

· Explanatory System

· Programming with Rules

· Variables

· Rules

· Rule Exercise

· Recognise Act Cycle

· Rules vs. structured programming

· Easy Notation but Lack of Power

· Conclusion

Rule Based System Architecture

·
· This is the runtime architecture

· The user starts the system and interacts with it via the user interface.

· This is the command prompt in Clips and the session window in Kappa PC.

· The engine is the part of the program that actually does stuff.

· It says, run the system, that is, look at working memory, see what rules fire, and apply them.

· You'll have the same inference engine for each rule base.

· The knowledge base is the rules and the working memory.

· The rules will remain the same for different runs.

· WM changes for each run and during the run.

Inference Engine

· The Inference Engine compares the rules to working memory.

· It picks a supported rule and fires it.

· There can be more than one supported rule, and this is resolved by a conflict resolution strategy.

· For example if the rules look like

· if (X is green) and (X is a fruit) then (X is a Watermelon)

· if (X is red) and (X is a fruit) then (X is an Apple)

· and working memory says X1 is green, X2 is red, X1 is a fruit.

· What rule is applied?

· What happens?

· Undo the rule and add the working memory item X2 is a fruit.

· What rule is applied?

· Now what happens?

Knowledge Base

· The Knowledge Base consist of rules and working memory (WM)

· Rules are if then statements

· On the if side you have conditional expressions, (e.g. X is green)

· You can have variables in here, in this case X is a variable.

· On the then side you usually have assignments.

· That is you set or modify working memory items.

· In Clips you set values by (assert (fact))

· You compare by stating the fact in the if part or by using (test (func params)). E.g (test (> ?a 3))

· The if part is conjoined by and by default and you can use the and or, and not functions

· Variables cross expression e.g.:

· If (favorite-colour ?Val) then (assert (pick Colour ?Val)

Working Memory

· Types of WM items

· Just like structured programming, items can have types

· You can enumerate values

· or have integer, real or really anything.

· In Clips you can also have complex templates and objects.

· We'll talk about hierarchies with semantic nets, but it is based on inheritence.

· Subclasses are specialisations of Classes.

· A mammal class, might have a specialisation of primates.

· The classes have slots.

· This is essentially a frame.

· Rules inspect working memory and can change it.

User Interface

· There can be a wide range of User Interfaces.

· I used to use a line mode UI with OPS5, where you typed in the WM items, and it printed out rules that fired and results.

· Kappa has a relatively sophisticated UI mechanism.

· Clips also has a line mode interface.

· Editing:

· An additional set of features is not for the user but for the developer.

· You want a rule editor, a WM editor, UI editor, and a debugger.

· Clips has debugging facilities but you do a lot of interaction through the command prompt. Note that it is really useful to develop a .clp (text) file and load it in frequently.

Example

· Let's build an Rule Based System for fruit and vegetable diagnosis.

· Let's identify Apples, Watermelons, Oranges, Tomatos and Lettuce.

· Here are some rules from earlier

· if (X is green) and (X is a fruit) then (X is a Watermelon)

· if (X is red) and (X is a fruit) then (X is an Apple)

· What will WM look like?

· What will other rules like?

· Can we make fruit and vegetable rules?

· What will it look like in Clips?

· What will the UI look like?

Fruit Answer

· Working Memory;

· A series of features

· HasSkin

· HasSeeds

· Colour

· Squishy

· IsFruit

· Type

· if (X HasSkin) and (X HasSeed) then (X is Fruit)

· if not(X HasSkin) then (X is not Fruit)

· if not(X HasSeeds) then (X is not Fruit)

· if (X is green) and (X is a fruit) then (X is a Watermelon)

· if (X is red) and (X is a fruit) and (X is not Squishy) then (X is an Apple)

· if (X is orange) (X is a fruit) then (X is an Orange)

· if (X is green) and (X is not Fruit) then (X is Lettuce)

· if ((X is red) or (X is orange)) and (X is Squishy) then (X is a tomato)

· In Clips:
If (or(Colour red) (Colour orange)) (IsSquishy True)
Then (assert (Type tomato))

· Write out UI including assertions for HasSkin, HasSeed, Squishy, and colour

· explicitly state (run) and (reset)

· Explanatory System
· One of the nice things about Rule Based Systems is that they can easily explain their reasoning.

· Why is this useful.

· How does it easily explain?

· Why is X a lettuce?

· Just print out the rules that you used.

· (You might have to prune dead ends, e.g. tomato)

Programming with Rules

· Formally rules are as powerful as any programming language (like Java).

· They are Turing Complete, but it's harder to do complex stuff with ESs (e.g. card dealing).

· That is, anything you can do with Java, you can do with rules.

· One way to get the power is to have a global variable store,

· have a mechanism for accessing and changing it,

· and have a mechanism for choosing which thing to do next.

· With these things you can program anything that is programmable.

Variables

· What are variables in progamming?

· They're like mathematical variables but they have a direct implementation in computer hardware.

· There is computer memory associated with a variable (e.g. 2 bytes, 32 bytes, or 2000 bytes).

· It usually has a type associated with (e.g. boolean, integer or string)

· The variable persists for a time specified by the program, then is used for some other program or perhaps reused for your program.

· You can inspect the variable (e.g. ==, <)

· You can change the variable (=)

· Clips uses lists for it's variables.

· So, you define a fact by for instance a 3-ary predicate like:
(age-of Chris 39).

· The developer and the reader nows that the age of Chris is 39, when he sees this fact.

Rules

· A rule has the format
if Boolean-Expr then Stmt

· if and then are keywords

· Expr and Stmt refer to expression and statement. They refer to programming language concepts, that I'm not going to fully explain.

· A simplified version is that an expression has a value and a statement does something.

· The if is itself a statement, though it recursively uses statement.

· Another type of statement is the assignment:
a = 3;

· Loops and procedure calls are also statements, as are compound statements (with curly braces).

· An expression has a value, and a boolean expression has a value of type boolean.

· For example:
a == 3
is an expression that has the value true or false depending on the value stored in the variable a.

· You can also have compound expressions combined using And Or, or Not

· For example (a > 1) And (a < 10)

· This stuff is the same for many programming languages, so it should not be new to you.

Rule Exercise

· Write an if then rule for a stop light

· If you've written the rule in java format, try it in clips format.

· Now write the rules for a drivers behaviour when the lights are, red, amber, green and red-amber (in clips format).

· What data items would you assert?

Recognise Act Cycle

· Rule Based Systems work on a Recongise Act Cycle

· Roughly, rules are recognised as firable.

· A rule is applied, which may or may not change working memory

· It may have side effects (e.g. print something out or move a robot arm)

· A new set of rules is recognised

· If no rules apply the system is done.

· Why?

· This can change if the system is interactive.

· If it is interactive, WM can change because of the interface and new rules can be applied.

Rules vs. Structured Programming

· Structured Programming is like C, C++ and Java (pretty much any language you've heard of).

· Structured Programming has loops, and functions.

· Are Rule Based Systems the same as a bunch of if then else statements?

· No, Execution vs. Branching

· It is a line of statements in C

· With a Rule Based System, each rule can apply at each cycle.

· A Rule Based System is essentially a big mutually exclusive if then else statement inside a loop

· How do you decide which one to apply?

Easy Notation but Less Power

· Expert Systems have a really simple notation

· People can easily understand the if then rule structure

· It's easy to generate rules

· However, it lacks power that structured programming gains from looping and function calls.

· Formally they are the same (Turing Complete), but it's harder to do complex stuff with ESs (e.g. card dealing).

· It also gets hard to keep track of large ES systems (over 1000 rules).

· Structured and OO programming are easier to manage.

Conclusion

· Rule Based Systems consist mainly of

· an Inference Engine, which is the same for different rule bases

· a Knowledge Base (rules and working memory)

· and a UI

· The inference engine runs through a recognise and act cycle

· Rule Based Systems are less powerful than structured programming, but easier to use and understand

· It's easy to get explanatory powers from a Rule Based System by showing the rules that were applied

· For next week read sections 5.1 and 5.2, and Chapter 4 to help with the Clips command prompt.

Lecture 3

Forward Chaining, Conflict Resolution, and Getting Rules to Work Together

· Conflicting Rules

· Conflict Resolution

· One Rule Firing Multiple Times

· Forward Chaining

· Using Derived Knowledge

· Multiple Rules and Interactions

· Loops

· Functions

· Conclusion

Conflicting Rules

· The rule selection mechanism chooses only rules that are valid and applies one of them.

· What happens when more than one rule can apply?

· This is what a conflict is.

· All the rules that are valid (whose LHS is True) are put into the conflict set.

· ES shells function differently and most have different modes for choosing which rule to apply.

Conflict Resolution Strategy

· When multiple rules can apply, you need a conflict resolution strategy

· The conflict is between different rules

· There are a range of different strategies

· Some systems apply all rules that can apply (e.g. the Parsimonious Production System)

· Some use the rules with the most conditions

· Others just do it by the order of the rules

· With small systems it doesn't really matter much, but with big systems it can really change performance.

One Rule Firing Multiple Times

· We said that if the LHS matches, then the rule is put into the conflict set.

· It's unusual for the RHS to change the LHS so most rules should remain in the conflict set. (Did you follow that?)

· They don't.

· If a rule has been applied, it won't be applied again unless one of the things the LHS depends on changes, or if there are mutliple ways of it applying.

· The simplest way to get a rule to fire twice is that it applies on multiple pieces of data:

· if (isdog ?x)=>(assert (issmelly ?x)))
with the two facts (isdog lassie) (isdog SantasLittleHelper)

· The other way is to change the value the LHS depends on.

Forward Chaining

· This is what we have done so far.

· Given facts, apply rules

· Of course there are a range of conflict resolution strategies

· It's deriving new knowledge from existing knowledge

· This is the way we normally explain Logic

· It works well when you already know a lot about the environment

· Can you think of another way to run a system?

Using Derived Knowledge

· Last week in the lab, we had a chain of reasoning

· Each rule derived a fact that anothe rule used

· This is derived knowledge

· The larger the ES the more derived knowledge should be used

· If not you have a large series of unrelated rules

· A good course work will use derived knowledge

Many Rules

· Structured programming languages largely specify the order that statements will be executed.

· Rule based systems by default do not.

· This is the power and problem with them.

· You can of course arrange it so that they are applied largely in the order you want.

· One mechanism would be to have a program-counter fact, and each rule would have a different value on the if side, and would change the value on the then side to select the next rule to apply.

· This requires the programmer to select which rule to come next and largely erases the simplicity of a rule based system.

· However, you can reach a happy medium.

· You largely leave the system to choose which rule to apply next, but in certain cases you manage it.

· The three basic control structures or branching (e.g. if then else), looping, and function calls.

Loops

· A loop repeats something over and over again

· A rule or set of a rules can implement a loop

· For one rule you need to keep the LHS true but change one of the data items it depends on.

· For example

· if (value ?a) (test (< ?a 5) then (assert (value (+ ?a 1))

· You get ?a, see if it is less than 5, and if so and assert a new fact. The next cycle this exact rule will be rerun again until (value 5).

· This is the basic idea for any loop.

· They can also benefit from an initialisation and conclusion rule.

Functions

· A function is a body of code that gets parameters.

· Depending on the parameters the function may calculate a return value and may have side effects

· A simple version of this can be done by making rules that only run when a particular fact is set.

· When the function is finished, that fact is changed.

· To call the function, you need to set up the parameters and then set the fact.

· This is only a simple version of function calls, because it does not allow recursive functions.

Conclusion

· Forward chaining goes from existing facts

· Using derived knowledge improves your system

· You can write rules where you specify the control structure.

· The basic techniques needed are for loops and functions.

· Read section 5.3 (for chaining), and for those who want to get a first on the exam, chapter 2.

Lecture 4

Knowledge Representation and Logic

· Knowledge
· Working Memory for a Rule-Based System

· Rules

· Logic
· Predicates and Variables

· Connectives
· Prolog
· How Good are KR Formalisms
· Boolean Logic and Monotonicity

· Logic Tables

· Conclusion
Knowledge

· There are some very simple purely reactive systems. They're called bacteria.

· A reactive system takes a stimulus and does something based on it.

· Everything else stores knowledge and uses it.

· What is knowledge?

· That's really a hard question.

· There are different ways to store knowledge.

· Some that you know about are programming variables, integers, booleans, reals, text.

· You can bind things together in objects, this is similar to a frame (which we'll talk about in a few lectures.)

· You can have basic symbols and make relationships between them which is semantic nets and we'll talk about this next week.

· You can have working memory

· You can have rules

· You can have logics

Working Memory

· Working Memory is a Knowledge Representation formalism

· Rule-Based systems vary, but usually WM is a series of facts

· What facts can you have?

· Fruit Example

· Blocks Example

· Wine Example

· Car Diagnosis Example

· Loan Example

· New Example on Noughts and Crosses

· What other things are ESs appropriate for?

· Clips also has Objects. It permits you to bind facts together (frames).

· Objects also give you inheritence (semantic nets).

· In a rather informal way, WM represents knowledge.

Rules

· Rules are also a form of KR.

· (For that matter programs are dynamic forms of KR.)

· Rules enable you to derive more facts.

· Rules are more dynamic than WM.

· The are of course of the form if X then Y

· This is similar to a formal logic.

Logic

· There are lots of forms of logic.

· Logics are systems that are developed to try to quantify what knowledge is.

· That's why Aristotle came up with a system 2500 years ago.

· The logics we are going to talk about are relatively simple and involve the concept of Truth.

· For example London is a City is True, and Chris is British is False

· (For the pedantic, this really is a simplification of the world.)

Predicates and Variables

· Predicates are essential to logics.

· London is a City is represented by City(London).

· You can think of Predicates as Functions.

· I can have multi-valued Predicates Taller(Chris,Ian).

· Instantiated Predicates have Truth Values:
Taller(Chris, Ian) = True
Taller(Ian, Chris) = False

· You can of course have variables

· Taller(x,Chris) refers to everyone who is Taller than Chris

· Note that all of the semantics in Taller is not part of the system, I might as well say Gern(x,Chris) or Gern(x,Ferb). Logic doesn't know anything about Taller unless you tell it.

Connectives

· Of course, you can use connectives like and, exclusive or, and not.

· Exclusive or vs. Inclusive or

· You can also have implications, in either direction

· and equivalence.

· There are signs for all of these.

· You can combine them, and distribute them.

· This should all be easy and is pretty much the same as a rule-based system.

· What are the differences?

Prolog

· Programming in Logic is not on the exam or in the coursework

· You write predicates (functions), and they get evaluated in a particular order

· The problem with Logic is that it actually takes a long time to derive all the possible facts

· Expert Systems have a conflict resolution strategy

· The Prolog program combines the rules with the conflict resolution strategy

How Good are KR Formalisms

· Knowledge Representation formalisms all are incomplete.

· They don't represent the world perfectly.

· We're not exactly sure how people represent knowledge, but it is certain that each person's knowledge is incorrect and incomplete (small brain big world).

· What do each of the KR formalisms help us do?

· Logic has very little semantics. It doesn't know what Taller means. I might as well say Gern(x,Chris) or Gern(x,Ferb). (This is a classic problem known as the symbol grounding problem.)

· Symbols can be dangerous. The things that we talk about in this class are purely symbolic, therefore they have no natural semantics.

· Different KR techniques are going to be better for different applications.

· One obvious distinction is between declarative a procedural knowledge.

· Declarative knowledge is smaller but faster.

· Procedural knowledge is bigger but slower.

· For example, it's faster to store 11x11=131 than to caluclate it, but you have to store a lot of information to do the 12x12 multiplication table.

Boolean Logic and Monotonicity

· This kind of logic has a problem: it must remain consistent.

· Remember that any rule of the form if False then anything is valid.

· So, if pigs fly then I am the smartest man on the planet. That's a true statment

· For a logical KB to remain consistent, it can't have X and not(X)

· If it does, then anything can be concluded.

· You can make up if clauses of the form if (X and not(X)) then Y, to conclude any Y.

· Standard Logic is monotonic. What you know can never be taken away.

· It seems that humans are non-monotonic. We can hold a belief and later change that belief.

· This is one of the problems of a boolean system.

· Still, boolean systems can go a long way to approximating the real world.

Truth Tables

· Logic Tables can be used to describe logical functions.

· Below is a list of several logic tables for different operators.

· The first input argument is the top row, and the second input argument is the first column. The outputs depend on the inputs and are found in the row and column corresponding to the input.

· The idea is that the statement has the output value based on the input values. So, if the statement is Pigs Fly and Chris is a lecturer, the overall statement is false. This corresponds to column 2, row 1 of the and table (because Pigs Fly is False and Chris is a lecturer is true).

· The And Table

PRIVATE

T
F

T
T
F

F
F
F

· The Or Table

PRIVATE

T
F

T
T
T

F
T
F

· The Exclusive Or Table

PRIVATE

T
F

T
F
T

F
T
F

· The Not Table

PRIVATE
T
F

F
T

· The If Table

PRIVATE

T
F

T
T
T

F
F
T

Conclusion

· There are different ways to represent knowledge.

· WM in Rule-Based systems is one way to represent declarative knowledge

· Rules are one way to represent procedural knowledge

· Logic is similar to ESs

· Logic has predicates.

· Instantiated predicates have truth values

· Logic Tables can be found here.

· Read 8.1.1 and 8.1.2 for Logic. It'll be on the exam. Universal and Existential Quantifiers won't be on the exam.

Lecture 5

Semantic Nets

· Last Week
· Semantic Nets

· Arcs in Semantic Nets

· Inheritence

· Semantic Net Example

· What's good about Semantic Nets
· Problems

· How do Semantic Nets Relate to Expert Systems

· What are ESs good for.
· Programming
· Conclusion
Last Week

· Do you have any questions from last week?

· Any questions on Predicates?

· Any questions on the coursework?

· I've put up the logic tables

Semantic Nets

· Semantic Nets were invented by Qullian in 1969.

· Quillian was a Psychologist (at UMich) and was trying to define the structure of human knowledge.

· Semantic Nets are about relations between concepts.

· Semantic Nets use a graph structure so that concepts are nodes in the graph.

· The concepts are connected by arcs which tells the relationship between the concepts.

·
[image: image1.png]
Arcs in Semantic Nets

· Nodes can have any value

· Arcs can also have any value

· Usually the arc relationship goes in one direction, with the implied reverse relationship in the other direction (covered-by -> covers)

· Typically, the semantic net has a small fixed number of primitives as arcs

· This is because these are the main things that the Net can be used for

· A particularly important relationship is Inheritence which is described by the label Is-A

Inheritence

· Inheritence is now used by Object Oriented Programming

· The idea of Is-A is that the subcategory is a specialisation of the super-category. So an Ostrich Is-A bird, and is thus a special type of bird.

· Properties are also inherited; so a bird is covered by feathers and therefore an Ostrich is covered by feathers.

· This property inheritence can also be explicitly overriden.

· So, a bird travels by flying, but an Ostrich travels by Walking

· Of course things can inherit from multiple super-categories. Dogs are pets, and are mammals.

· Inheritence Conflicts. This means that there can be conflicts.

· Instances are a special subset of inheritence. (Type vs. Token)

· They refer to a particular individual, where the general node refers to a class.

· Inheritence and instance-of gives representational economy.

· Another popular arc is part-of.

Semantic Net Example

· What birds are there?

· Name some inheritence overrides.

· Name some inherited features that are not overriden.

· What colours can birds be?

· What does Clips have that is related to this.

· Draw a semantic net for mammals.

· Put in a cat-dog.

What's good about Semantic Nets

· Semantic Nets start to show relationships between concepts.

· This is good because it gives us a lot more power.

· They're an attempt to represent knowledge the way people do it.

· Why is this important?

· They start to solve the symbol grounding problem. What does a symbol mean?

· It means the things it is related to.

How do Semantic Nets Relate to Expert Systems

· Can you implement a semantic net with a Rule Based System?

· Of course. How?

· Try to write an RBS that shows you all of the arcs of a system.

· Try to write an RBS that returns all properties of an instance (implement inheritence)

· Try to write an RBS that tells you all the colours a certain category can take.

· ESs can take advantage of a Semantic Net to usefully represent knowledge. (A big ES might do this.)

· ESs are about process and Semantic Nets are about Representation

· How do Semantic Nets relate to working memory and logic?

· How do Semantic Nets relate to case based reasoning.

Good Rule Based Systems

· What are rule based systems good for?

· Things that can be described by rules

· Things that use derived knowledge

· What else?

· Would semantic nets help a rule based system? You bet.

· Here are some ideas for rule based systems: water analysis, tic-tac-toe, natural language parsing, natural language generation, goal directed behavior, system configuration, and animal classification.

Programming

· What primitives do you need to program?

· Variables and assignment

· branching (if's)

· goto (loops or function calls)

· With these primitives, you can program anything.

· Rule based systems have all of these things, so you can program anything with them

· Moreover, you now know how to do all of these thigns.

· How would you write rules that print out the numbers one to ten, 5 times?

· How would you write rules to calculate the average of 5 user inputs?

· To average an unlimited number of inputs?

Conclusion

· Semantic nets are about concepts (nodes) and their associations (arcs).

· Thus they are associative memory.

· They are a concise way of representing information, and inheritence is clearly useful as the software engineers have taken it over.

· Rule based systems can implement Semantic Nets, but a lot of other types of systems can take advantage of them.

· Do we represent concepts this way? Try the 10 questions game.

· I need coursework proposals by next week.

· Read section 6.1 and 6.2 (5 pages)

Lecture 6

Rule Based System Examples

· Last Week
· Goal Directed Behaviour

· Backward Chaining

· Backward Chaining part 2

· When to use Which

· And-Or Trees

· And-Or Trees for ESs

· What are RBSs good for?

· Diagnosing with Mycin

· Prescription with Crop Advisor

· Configuration with R1/Xcon

· Optimum-AIV and Planning

· Other Systems

· Your Systems

· Conclusion

Last Week

· Last week we talked about Semantic Nets.

· Any questions about them.

· Remember nodes represent concepts, and arcs represent relations

· Is-A (Inheritence) is a particularly important relation and give representational economy.

· Semantic nets are a good representational format for declarative knowledge.

Goal Directed Behaviour

· A lot of animal behaviour is goal directed.

· In particular, a lot of human behaviour is goal directed.

· I say I want to achieve something, like get a coffee, and then I set about finding ways to achieve it.

· Imagine a rule base which enabled you to achieve the goal, but still needed extra information (facts)

· The system could ask the user (not the developer) for the information it needed

· Now instead of asking all the possible information for all behaviours, I'd only have to ask the information for one method for achieving my goal.

· An easy way to look at one iteration is what rules can be applied to fulfill my goal?

· Try to apply one of them.

· If you can't apply one (because you don't have the facts), try to derive the facts.

Backward Chaining

· Backward Chaining means chaining back from the goal, to apply rules that meet the goal.

· As with Forward Chaining there are rules and WM.

· However there is also a goal stack.

· So given the rules

· if (have money) and (at coffee-shop) then (lose 75p) and (have coffee)

· if (have water) and (have ground coffee) and (have cofee-machine) then (have coffee)

· if (at office) and (can walk) then (at coffee-shop)

· if WM = (have money) and (at coffee-shop)

· set the goal, then apply the first rule

· if WM = (have money) and (at office) and (can walk)

· set the goal (have coffee)

· try to apply the first rule

· add (at coffee-shop) to stack

· apply third rule, and pop the stack

· apply first rule and achieve the ultimate goal

· In class exercise:

1. Simulate a run of this system forward

2. What data items do you need?

3. Simulate a run of this system backward

4. What data items are you prompted for

Backward Chaining 2

· Stacks. Do you understand stacks?

· What happens if you choose rule 2 first?

· What happens if you can't achieve a sub-goal?

· Backtracking: go back to an early state and try a different branch

· Kappa also enables you to prompt the user for facts. I haven't been able to make Clips do it yet.

· The developer marks slots to say they can be prompted for.

· You can also have multiple goals added to the stack from one goal rule.

· What would happen if there were nothing in WM and you wanted coffee?

When to Use Forward and Backward Chaining

· The problem being solved tells you which is best!

· Forward is best if

· There is no obvious goal to set

· All of the data is already there

· There are many possible goals and a small number of patterns

· tends to be better for small systems

· Backward is best if

· Data is expensive

· Explanation is important

· There is a lot of possible data and a lot of goals

· It tends to be better for medium sized systems

· In class box-world exercise:

· You have 2 boxes name A and B. A is on-top of B.

· What does WM look like?

· What do rules look like?

· The goal is to have B on-top of A.

· How does the goal stack change, and when are rules applied?

· State space and fan out and fan in (section 2.1)

And Or Trees

· And Or Trees can be used for Problem Decomposition

· Nodes are goals

· Nodes are connected by lines (ors), or by lines tied together (ands)

· Leaf nodes are facts that are not derivable by the system

· A rule is the if part below (anded together) with the conclusion on top.

· Coffee Example as a tree

· Subgoals that both need to be solved are anded together

· Subgoals either of which can be solved are ored

And Or Trees for Expert Systems

· Use And Or trees for subgoals

· To achieve X, you have to do A, B, and C

· To achieve A, you have to do I, J or K

· of course you may have to do (I and J) or K

· So you can describe your ES using an And-Or tree

· Coffee example:

· The root is have coffee

· The subgoals are, (buy it) or (make it) or (get someone else to get it)

· To (buy it) you have to (have money) and (be at shop)

· What does this tree look like?

· Expand the tree.

· You can use an and-or tree for other things, but generally it works well with goals

What are Rule Based Systems good for?

· You answer!

· Good for a system that can be described by rules

· Good for a system with some complexity (derived knowledge)

· Not good for a system that can't be described by rules

· What kinds of tasks fall in this category?

· Planning (Molgen chemical synthesis)

· Diagnosis (Mycin)

· Intepretation (Prospector mineral deposits)

· Monitoring (Navex Space Shuttle)

· Configuration (R1/XCon)

· Instruction/Intelligent Tutoring Systems(Sophie power pack repair)

· Prediction (Plant crop damage)

· Debugging (Cooker Advisor can souped sterilizer)

· Control (Ventilator Management Assistant / MiniPharm)

Diagnosing with Mycin (1972)

· Purpose: to assist a physician, who was not an expert in the field of antibiotics, with the diagnosis & treatment of blood disorders (and in particular to establish whether the patient was suffering from a serious infection like meningitis).

· Input: symptoms & test results

· Output: a diagnosis, accompanied by a degree of certainty, & recommended therapy

· Knowledge representation: production rules (and simpler data structures)

· Inference engine: Mixed chaining, but principally backward chaining from a top goal: that diagnosis & therapy is needed. Rules are found to satisfy conditions of this rule, then further rules to satisfy these. Evidence may be sought from the user.

· A successful (and enormously influential) expert system:

· did a complex task. performed well: tested against medical students, non-specialist doctors and blood infection specialists, it did better than the former two groups and equalled the latter group.

· but note that MYCIN was just a laboratory demonstration - it was never marketed, or installed in a hospital and used for routine work.

· These notes are from John's slides. He has a much more thorough example.

· Write down some diagnostic problems that RBSs could be used for.

· Can you think of some diagnostic problems RBSs couldn't be used for?

Prescription with Crop Advisor (1989)

· Developed by ICI (in 1989) to advise cereal grain farmers on appropriate fertilisers and pesticides for their farms.

· The choice of chemical, amount, and time of application depends on such factors as crop to be grown, previous cropping, soil condition, acidity of soil, and weather.

· Farmers can access the system via the internet.

· Given relevant data, the system produces various financial return projections for different application rates of different chemicals.

· The system uses statistical reasoning to come to these conclusions.

· If the question asked is outside the system's expertise, it refers the caller to a human expert.

· What about statistics?

· How would it know it was outside it's expertise

· The chief advantages of this system have been

· that employees at ICI have been relieved of the need to provide lengthy telephone advice sessions,

· and the quality of the advice has become much more uniform, which has increased confidence in the company's products.

· What other perscription tasks could RBSs be used for?

· Note that my original list of tasks didn't include perscription. Is my list exhaustive? What other things could RBSs be used for?

Configuration with R1/XCon (1978)

· Knowledge domain: Configuring VAX computers, to customers' specifications.

· Input: Required characteristics of the computer system.

· Output: Specification for the computer system.

· Inference engine: Forward chaining: the output specification was assembled in working memory.

· Knowledge representation: Production rules.

· DEC attempted to write a conventional program to do this task, with no success, then invited McDermott to write an AI system to do it. McDermott wrote R1/XCON. By 1986, it had processed 80,000 orders, and achieved 95-98% accuracy. It was reckoned to be saving DEC $25M a year.

· R1/XCON suffered from the shortcomings of simple production-rule-based systems.Expensive rewriting was needed to restore the operation of the system

· What other configuration tasks could RBSs be used for?

Optimum-AIV and Planning

· OPTIMUM-AIV is a planner used by the European Space Agency (1994) to help in the assembly, integration, and verification of spacecraft.

· It generates plans, and monitors their execution.

· Unlike a conventional scheduling tool, it has a knowledgebase which describes the underlying causal links that dictate that the assembly must be undertaken in a particular order.

· Therefore, if a plan fails and has to be repaired, the system can make intelligent decisions about which alternative plans will work and which will not.

· It can engage in hierarchical planning - this involves producing a top-level plan with very little detail, and then turning this into increasingly more detailed lower-level plans.

· It can reason about complex conditions, time, and resources (such as budget constraints).

· What other planning tasks could RBSs be used for?

· What planning tasks are RBSs not good for?

Other Systems

· Give examples of problems that RBSs might be used for in:

· Intepretation (Prospector mineral deposits)

· Monitoring (Navex Space Shuttle)

· Instruction/Intelligent Tutoring Systems(Sophie power pack repair)

· Prediction (Plant crop damage)

· Debugging (Cooker Advisor can souped sterilizer)

· Control (Ventilator Management Assistant / MiniPharm)

Your Systems

· What systems are you going to do?

· Do they have derived knowledge?

· What category (ies) (planning, monitoring, configuration etc.) does it fall into?

· How are you going to get the knowledge? (Knowledge Engineering is next week.)

· What kind of chaining are you going to use?

· What is WM going to look like?

· What are the rules going to look like?

Conclusion

· Rule Based Systems can be used for a wide range of tasks.

· Type of chaining is an essential decision in designing an RBS.

· Interaction with the user is also important.

· A good RBS uses derived knowledge.

· Read chapter 3 (20 pages)

Lecture 7

Case Based Reasoning

· Last Week

· Cases

· Feature Selection

· Loan Example

· Similarity

· Distance in Multiple Dimensions.

· Loan Example Part 2

· Categorisation

· Modifying Result

· CBR Maintenance

· Conclusion

Last Week

· Last week we covered backward chaining and and-or trees.

· Backward chaining is about goal directed behaviour. Questions?

· And-Or trees are structures that can be used to describe backward chaining systems.

· Any questions on and-or trees.

· Any questions about the course work.

Cases

· The main idea of case based reasoning is quite different than expert systems

· The system has a large number of cases (a case base).

· When the system is presented with a new case, it finds an existing one that is similar.

· The action that is suggested is the action that was done on the retrieved (similar) case.

· Of course the cases have to be described some way.

· It is usually done by a list of input feature value pairs, and an ouput action

Features

· How do you calculate similarity? (We'll do this in a bit.)

· How do you describe the cases?

· The real work in actually implementing a CBR system is figuring out a good way to describe the cases.

· Typically you pick a set of features and describe their possible values.

· This is quite similar to defining working memory in an ES.

· However the values you allow are important in calculating similarity.

· You need to select the relevant features.

· Do all features need to be equally relevant?

Loan CBR Example Features

· You can use CBR for determining whether someone gets a bank loan.

· What is the output?

· If they get the loan or not. You can add a "maybe" option too.

· What are the input features?

· Let's keep it simple for now, income, expenses and assets.

· How do you represent these values?

· What other features are there?

Similarity

· Lets have three existing cases:

PRIVATE
Name
Income
Expenses
Assets
Result

Chris
25000
20000
50000
Yes

Pat
25000
25000
50000
No

Sandy
50000
45000
-25000
No

· Mel wants to take out a loan (everyone asks for 10000), and makes 35000 per year spend 25000 and has 10000 in assets. Should Mel get a loan.

· You need to compare to the others. How do you compare? Which is Mel closest to.

· Mel shares one feature exactly with Pat, so is that closest?

· Measuring similarity is really important.

· Here you might have a complex way of comparing, get total surplus multiply that by 5, and add to assests.

· So Mel is 60000, Chris is 75000, Pat 50000 and Sandy 0

· Which is Mel nearest to. Here you could say Pat(No), but you could also say Chris(Yes) or Maybe because it's between a No and Yes

· In this case we've taken all the features and combined them to get one value. You can't always do this and it's not always wise.

Distance as Similarity

· Another simple way to guage similarity is distance.

· It's easy to see how this would work in two dimensions.

· Plot both points, and see which is closest.

· In two dimension, distance is square-root(square(x0-x1)+square(y0-y1))

· You want to pick the smallest distance (the closest)

· If you want to make one feature more important, just multiply it.

· Distance in two dimensions translates to N dimensions. So you can do it with 5 dimensions if you want to.

· In general the form is square-root(square(x0-x1)+square(y0-y1)+....square(n0-n1))

Loan Example Part 2

· Now we can compare the three-tuples using distance

· Chris vs. Mel = square-root(square(25000-35000)+square(20000-25000)+ square(50000-10000)) =

· square-root(square(-10000)+square(-5000)+ square(40000)=

· square-root(100,000,000 + 25,000,000 + 1,600,000,000)=

· square-root(1,725,000,000)=41,533

· I could make the others more important by dividing assets by 4 making square-root(525,000,000)=22912

· If you add the feature married, single, and couple, how do you compare the features?

Categorisation

· One key area of AI is categorisation. How do you group things together?

· The similarity problem is a categorisation problem.

· The distance measurement is one way to categorise, but there are lots of other methods.

· Neural Nets, Genetic Algorithms, Rule Based Systems and of course statistics can all be used.

· What should a good similarity metric do?

Modifying Result

· Once you've retrieved a similar case, you may want to modify it.

· This gives the system flexibility

· So, I have a case that I don't know the answer to

· I compare it to cases (that I do know the answer to) in the case base

· One case from the case base is retrieved along with its solution

· The retrieved solution can be slightly modified to fit the queried case

· In the Loan example, the amount of the loan may be changed

Maintenance

· Just like any other software system, CBR systems need to be maintained.

· The addition of new cases is an obvious way to improve the system.

· However, care is needed that the underlying cases are not changed over time.

· A loan from 1900 is really quite different than one from 2000.

· Additionally, changing the similarity metric may also vastly change the performance of the system.

· Bad results can be fixed by modifying the similarity metric or modifying the case base.

· What happens if the case base has a bad answer in it? There is no reason that it cannot be removed.

· Another important technique is to keep a series of tests around. These are separate from the case base but can be used to test the performance of the system.

Conclusion

· Name examples of domains where you can use CBR.

· The key task in developing a CBR system is to find a way to represent the cases.

· The second key is to develop a good similarity metric.

· A good similarity metric categorises new cases correctly.

· Remember that you need to have a good feature set before you can get a good similarity metric.

· Read chapter 22 (17 pp.)

Lecture 8

CBR Examples

· Last Week

· Soya Bean Example

· Appropriate Domains

· Help Desk Example

· Advantages of CBR

· Steps for building CBR systems

· Engineering CBR systems

· Cassiopee Example

· Hybrid Systems

· Programming CBR Systems in Caspian

· Conclusion

Soyabean Example

· To refresh your memory here is an example:

· Suppose that we have a sick soyabean plant, and we wish to discover which of a number of known specimens of sick soyabean plants it is most like.

· Choose (let's say) three characteristics of the leaves that can be represented as numbers:

1. Amount of the leaf that is covered by the discolouration

2. Lightness of the discoloured parts of the leaf

3. Lightness of the remaining parts of the leaf

· Suppose that the first two cases to be matched are:

PRIVATE
case 1:
coverage - 8
lightness-1 - 4
lightness-2 - 6

case 2:
coverage - 10
lightness-1 - 7
lightness-1 - 6

· Adding a third case: (2, 3, 9)

· Which is more similar?

· To find out whether case 1 is more similar to case 2 or to case 3, you simply calculate the two distances, and pick the smaller of the two.

· Now can you think of any other CBR examples

· What would CBR be good for?

Appropriate Domains

CBR is suitable:

· when the domain is broad but shallow.

· when experience rather than theory is the primary source of information.

· when the requirement is for the best available solution, rather than a guaranteed exact solution.

· when solutions are reusable, rather than unique to each situation.

Helpdesk Example

· the COMPAQ SMART system.

· The problem was that:

· Thousands of customers were calling Compaq directly every day, requesting support.

· Many of the staff were new; there was a major training problem.

· There was a need for consistent & accurate answers and responses

· There was a need for retention of corporate knowledge.

· The COMPAQ SMART system, once developed and installed, succeeded in solving 85-95% of calls.

· Typical time to solve a problem was less than 2 minutes.

Advantages of CBR

· Case-based reasoning:

· tends to focus on the problem's essential features.

· can solve problems in domains that are only partially understood.

· can provide solutions when no algorithmic method is available.

· can interpret open-ended and ill-defined concepts.

Steps for building CBR systems

1. Obtain data for cases.

2. Design cases based on data.

3. Determine the case memory structure.

4. Decide the case retrieval method.

5. Decide whether a case adaptation procedure is appropriate (and, if so, implement it).

6. Develop the rest of the system (e.g. the user interface).

Engineering CBR systems

· "Fixing" inconsistencies between diagnosis and symptoms. Techniques:

· the end user does it

· knowledge-based (qualitative reasoning, etc)

· a fixed procedure

· Problem about updating the case-base with adapted cases:

· Since the new case isn't exactly like any of the cases in the case-base, it can't really be said to have been solved by the expert judgement that was used to build the case-base in the first place.

· There is a real chance that the conclusion that the system came to is wrong in this case

· If wrongly concluded cases are added to the case-base, it becomes progressively degraded

· Typically, the procedure is to put fresh cases into a special file, and have the Domain Expert pass judgement on them before they are added to the case-base.

Cassiopee Example

· Used a combination of inductive and CBR techniques.

· Written using KATE-CBR, by AcknoSoft of Paris, on behalf of an engineering firm owned by General Electric and SNECMA.

· A diagnostic system for aircraft engines: CFM 56-3 engines in Boeing 737s and Airbus A340s.

· The cases came from a legacy database of 23000 engine maintenance reports, built up over 8 years.

· Experienced engineers worked over the cases, eliminating items where there was no diagnosis or mis-diagnosis, and duplicates.

· This left 16000 cases, each with up to 100 features

· Case selection was by a decision tree, generated from the cases.

· This directed the questioning of the user, to provide a set of symptoms, to select cases.

· Integrated with an Illustrated Part Catalogue

· Generates reports of reliability and maintainability using EXCEL

· Uses e-mail to collect maintenance reports world-wide.

· Very fast diagnosis: reduced diagnosis time by 50%

· Won 1st prize for innovative software applications at the European XPS show, Germany, March 1995.

Hybrid Systems

· Can you combine AI techniques?

· Could you use an ES along with a CBR to solve a problem?

· Of course you can integrate knowledge representation schemes.

· Why would you build a hybrid system?

· What about combining with other systems like Neural Nets or Genetic Algorithms?

· ESs, CBRs, Semantic Nets, Logic and Frames are all base components.

· They can be combined.

· Exercise: In groups of 4, discuss how you would make a CBR system to identify plants?

· Part 2: discuss how you would combine a semantic net with a CBR system to identify plants?

Programming CBR Systems in Caspian

· You should have now done one (and maybe two) lab in Caspian.

· Do you have any questions about how it works?

· You can use a CBR system for your coursework.

· It should be relatively simple to get a passing mark. (Probably as simple as getting a passing mark in Kappa-PC.)

· To get a really good mark, you'll need to do something useful.

· CBR systems are not Turing Complete and are therefore can not be used to solve as many problems as Rule Based Systems.

· You can improve it by doing case adaption

· You can also get points for explaining and defending your matching algorithm.

Conclusion

· How do CBR systems compare to RBSs?

· Which are easier to develop? Maintain?

· CBR systems are good for broad shallow domains

Lecture 9

Knowledge Engineering

· Last Week

· Knowledge Engineering

· Sources of Knowledge

· Interviewing Experts

· Representing the Expert's Knowledge

· Knowledge Based System Engineering

· Knowledge and System Validation

· Learning Systems

· Computer Assisted Learning

· Derived Knowledge

· Conclusion

Last Week

· CBR systems are good for domains where information comes from examples and there is not much theory.

· There are other similarity measurements aside from distance.

Knowledge Engineering

· Knowledge Engineering is about designing, building, installing and maintaining knowledge based systems.

· It is one place where AI meets Software Engineering.

· So far in this module, we've discussed Rule Based Systems, Logic and semantic nets.

· We will discuss some other Knowledge Representation mechanisms and Case Based Reasoning.

· The process for Engineering these systems is different than traditional programs largely because they are more experimental.

· Also they are more knowledge dependent and thus more domain dependent.

· With traditional software it is often not clear what the user wants or needs. It is usually even less clear with knowledge based systems.

Knowledge Sources

· When developing software you need to figure out what the user needs.

· With knowledge based systems you also need to figure out what the user knows because your going to encode that knowledge in your system.

· Where can you get knowledge about a problem?

· Text books, reports, journal articles, case histories.

· Databases (datamining)

· However, for real systems (particularly ESs) these sources do not provide deep knowledge.

· For that you need Human Experts.

Interviewing Experts

· To get knowledge about a domain, you usually need to ask an expert.

· However, the expert doesn't usually have that knowledge around in a way you can use it.

· Compiled Knowledge Problem: The experts knowledge is hidden in them.

· Sometimes it is quite accessible, and they can give you rules for the domain.

· Sometimes they know the rules, but can't voice them well.

· Sometimes they don't even know about the knowledge they have (e.g. cheese expert).

· Interview Techniques

1. Unstructured Interview

2. Structured Interview

3. Problem Solving Interview

4. Think aloud interview

5. Non-Interview techniques like a questionairre or having the Domain expert make a presentation.

· Always record the interview (at least take notes).

· You want to get at their knowledge any way you can.

Representing the Expert's Knowledge

· You need to represent this domain appropriately

· There are a host of decisions to be made.

· Can you use an Rule Based System, or is another system (e.g. CBR, NN) better.

· Is a knowledge based system even feasible?

· Should you have some sort of intermediate representation (e.g. and/or tree)? This can help you figure things out, and can be used to help others understand the system.

· Traditional knowledge representation questions are also reasonable. Should you use a semantic net, or something else (e.g. frames, logic)?

· What type of objects (WM) are you going to have?

· If your using a Rule Based System, what kind of chaining are you going to use?

Knowledge Based System Engineering

· Like most Software Engineering, Knowledge Based System Engineering is a cyclic process.

· All of these processes should happen, and many of them will happen multiple times.

· Knowledge Acquisition

· Knowledge Analysis and Representation

· Knowledge Validation

· Inference Design

· Explanation and Justification

· Testing

· Maintenance

Knowledge and System Validation

· Part of the ongoing process is testing.

· You have to assure that two things are right, the knowledge and the system.

· The knowledge you get from an expert may not be right.

· You may translate it incorrectly or they may give it to you incorrectly.

· You can compare with the expert (ask them, interview them), and you can compare with other epxerts.

· Of course you need to validate the system too. You need to check with experts and users.

Learning Systems

· Another way to get the knowledge is to use an AI program that automatically learns the knowledge.

· A neural net is a system that can be used to automatically learn knowledge.

· Feed forward nets learn functions from inputs to outputs by training on existing data.

· There are also symbolic knowledge acquisition systems. This is called machine learning.

· Machine learning can be used when there are no experts, or expertise is expensive.

· This machine learning is almost the same thing as data mining.

· Currently, an expert is better in almost all things than a machine learning system.

Computer Assisted Learning

· While machine learning is generally not as good as human learning, combining the two can be very useful.

· This is intimately related to Decision Support Systems.

· A good example is some of Doug Lenat's system.

· He had a system to play the game traveller. It automatically generated rules that it felt were good. He would then look at the rules and further explore the ones he thought were good.

· He and his system won the competition twice, and they banned computers from it.

· Roughly, you can use computers to come up with lots of possible answers. You can then explore the ones you think are good.

· In class exercise, should we build a system to teach BIS 2040?

Derived Knowledge

· In Rule based systems, derived knowledge is knowledge that the user neither puts directly into the system, or recieves from the system, but the system uses.

· Pragmatically, a WM item that is on the then side of one rule and the if side of another is derived.

· Why is derived knowledge important? It shows that the system is doing more reasoning. It shows that it is a deeper system.

· What is an example of derived knowledge?

· In noughts and crosses, knowledge that the opponent has two in a row is derived from the board.

· In the engine example knowledge that the engine condition has petrol or not is derived from knowing that the carburettor receives petrol.

· If you're doing a RBS for your coursework, you'll need derived knowledge to get a first or upper second, and it probably would help for lower second.

· What would be an example of derived knowledge in your domains?

· In class work: write a rule that determines that X's have two in a row. Write a rule that uses that fact.

Conclusion

· Knowledge Engineering is the entire process of build knowledge based systems.

· It is essential to get domain expertise.

· A good place to get this expertise is from a domain expert.

· It is still software engineering, so a project life cycle is inevitable.

· Automated learning techniques can be useful in acquiring domain knowledge.

· For next week, read section 10.1, 10.3.1 and 10.3.2.

Lecture 10

Frames and Expertise

· Last Class

· Frames

· Defaults and Scripts

· Frames and Semantic Nets

· Generality and Subsumption

· Expertise

· What Tasks are Expert Systems Good For

· Example

· Conclusion

Last Week

· Last class we did Knowledge Engineering

· Domain expertise is essential

· With KB systems there is still a project life cycle though it is somewhat altered

· Interviewing experts is useful

· You can acquire knowledge via machine learning

· Has anyone made progress on their coursework?

· Are there any questions on it?

Frames

· Frames are collections of slots or features.

· Records in Pascal and other languages are Frames.

· In Java objects with no methods are Frames.

· Frames (and these other things) agregate features together.

· They bind useful things together so the package (object) can be thought of independently.

· Sentences can be described by Frames. So the name of the frame is the verb, and all of the other Noun Phrases and Prepositional Phrases are slots or features.

· Sandy hit Pat with the ball. ->

PRIVATE
Hit

Actor
Sandy

Object
Pat

Instrument
Ball

Defaults

· Frames can be used for Default reasoning.

· The sentence might be Sandy ate. which is represented by the frame

PRIVATE
Eat

Actor
Sandy

· What did Sandy eat? What did he eat with? The default eat frame could answer this

PRIVATE
Eat

Actor

Object
Food

Instrument
Knife and Fork

· Combining the two gives

PRIVATE
Eat

Actor
Sandy

Object
Food

Instrument
Knife and Fork

· The default can be overriden when you have a sentence like Sandy ate dirt, you get

PRIVATE
Eat

Actor
Sandy

Object
dirt

Instrument
Knife and Fork

· This is similar to the Script concept developed by, among others, Schank.

· Scripts are about longer stories, for example the restaturant script or the birthday party script.

Frames and Semantic Nets

· Of course you can put these Verb Frames (or other Frames) into a hierarchical relation like a Semantic Net.

· Run isa Movement-onFoot isa Movement

· You can also use a semantic net for slots.

· So, in the eat frame, the default (food) could be an entry into a semantic net.

· You can combine the two.

· You have eat-chinese-food isa eat-food.

· What would the frame for eat-chinese-food look like?

Generality and Subsumption

· Inheritence is intimately related to generality and subsumption.

· The eat frame is more general than the eat-chinese frame. Why?

· There are fewer constraints on it. Eat-chinese is still an eat, but there are eats that are not eat-chinese (e.g. eat-Italian)

· Eat subsumes eat-chinese.

· What are the constraints on eat-chinese that are not on eat?

· How do defaults effect this subsumption? Can you eat-chinese with a fork?

· What about things that break the essential character of an object? E.g. toy-dog and dog? Is there an example for eating?

Experts

· An expert is an experienced practitioner in his/her particular field.

· More than that, he/she is a highly effective problem-solver and decision-taker in that field.

· Experts have three qualities:

1. They make good decisions

2. They make those decisions quickly

3. They are able to cope with a wide range of problems.

· As a result, they are valuable, highly-paid, and tend to be overworked.

· Note also that an expert can usually explain and justify their decisions.

· A human expert can update their knowledge in the light of common sense, knowledge derived from other domains, and contacts with other experts. An expert system can't.

What Tasks are Expert Systems Good For

PRIVATE

Deep Cognitive Skills
Judgemenatal Skills
High-level Social Skills

Highly Creative
Musician
Senior Manager
Author or Poet

Analytical
Mathematician
Economist or Programmer
Social Scientist

Strictly Procedural
Typist
Driver
Social Worker

· ESs are good for domains that are analytical and judgemental.

· A rather simpler approach to answering the question which domains are worth building into an expert system?

· Any problem that can be and frequently is solved by your in-house expert in a 10-30 minute phone call can be automated as an expert system.

· Can you name some analytical and judgemental domains?

· Can you name some tasks that are solved with a 10-30 minute phone call?

· Why do these two heuristics work?

Example

· The housing department in a provincial English town is overworked, although the staff turnover is quite low. Much of the work the staff do involves interviewing clients, and there is a clear pattern of questioning (which varies to a limited degree, depending on the circumstances of the client). It is proposed to build an expert system, which will direct the questioning process.

· Is this a good domain for an ES? Why or Why Not? Discuss in groups of 4.

Conclusion

· Frames are structures.

· They can easily be used for default reasoning.

· They can easily be combined with semantic nets.

· An expert is a highly effective problem solver.

· Expert Systems are only good for some tasks.

· For next week, read 6.3 for Frames (and semantic nets).

· Review sections 1.1 and 1.2 for expertise.

Lecture 11

Unifying Themes

· Last Week

· Review

· Semantic Nets (again)

· Semantic Nets/Inheritence)

· Logic

· Symbolic Programming

· Symbolic Knowledge Representation

· Search Spaces

· Conclusion

Last Week

· Reading on Decision Trees: pp 390-392

· Last week we covered Frames and Scripts, and Expertise.

· Frames are structures and can easily be used for default reasoning. Questions?

· Experts in a domain are highly effective problem solvers in that domain.

· Any questions on expertise.

· Any questions about the course work.

Semantic Nets

· Semantic Nets represent concepts and relationships between concepts

· They are a graph structure

· Concepts are represented by nodes, and relations by arcs

· It's all about associations

· When you come up with the slots in a DB table you specify the important relationships

· These relationships would occur in the Semantic Net, but other less important ones would also occur.

· Do you remember the 10 question game? Why did that work? Associations.

· Can you draw a Semantic Net for the 10 question game we played in class?

Semantic Nets/Inheritence

· You can specify lots of different relationships (arcs).

· Probably the most important is Inheritence. Why? Representational Efficacy.

· Inheritence is the Is-A or subcategorisation arc. A Mammal Is-A animal.

· Inheritence allows default reasoning, but defaults can be explicitly overridden

· An instance-of arc is like inheritence, but it can't be inherited from.

· Kappa uses these relationships when you build your knowledge base (and Java uses inheritence).

· See the semantic nets lecture.

Logic

· The simplest forms of logic are about true and false, and we're only handling the simplest forms.

· See the logic tables.

· You really need to know the connectives. They're pretty simple, and I suspect you already know them implicitly if not explicitly.

· The next step in logic is predicates. These are functions that don't have any side effects. Again, I expect you already know these things implicitly if not explicitly.

· The final bit is about variables. Instead of using constants, you can use variables to refer to sets.

· Now, you all already know this stuff, so why am I evaluating on it.

· Firstly, to make sure you do know it.

· Secondly, because it forms the basis of a lot of computer science. (Prolog, functional programming, sets, theoretical computer science, digital circuit design, even SQL)

· See the logic lecture.

Symbolic Programming

· The major learning outcomes for this module revolve around Symbolic Programming:

· Rule Based Systems

· Case Based Reasoning Systems

· In both types of systems, the primitives are symbols.

· We've also called symbols features.

· In RBS systems these are the working memory items.

· In CBR systems they are the features that each case is made of.

· RBS and CBR systems differ in the way they use these symbols.

· RBS systems use rules whose if clause is based on the current state of the symbols (WM); the then clause may change the symbols (WM)

· A CBR system compares a new tuple of symbols (a case) with all of the old tuples (the case base) and finds the one nearest.

· In addition to being able to use these systems, you should know when to use them, and some software engineering concepts for their development.

Symbolic Knowledge Representation

· A related topic and one that covers the rest of the learning outcomes is representing the symbols.

· There are lots of ways of representing symbols and these align with types in programming languages.

· So, a WM item or a CBR feature might be an enumerated type, an integer, a boolean or a real.

· It might also be an object.

· We can also use more sophisticated techniques like Logic, Semantic Nets, and Frames.

· Logic is about boolean values, and simple connectives.

· It also takes advantage of the (well used) concept of functions. For this reason I could have put logic on the prior page.

· Semantic Nets are about nodes representing concepts and arcs representing relations between concepts.

· I could use a semantic net in a RBS by using an isa operation.

· For example If (X is red) And (X isa bird) Then (X is cardinal)

· Similarly, I could use a semantic distance measurement (number of arcs crossed from one node to another) as part of the similarity metric in a CBR system

Search Spaces

· Another important concept in determining how to solve a problem is the concept of search space

· You can figure out the size of your problem (size of the search space) by figuring out how many states your system can be in.

· Solving the problem is then done by changing the state to get to a good state or even the best state.

· What is the size of the search space for tic-tac-toe

· With a CBR system, the size of the space is all possible cases.

· You solve a problem by retrieving a case, where you know the answer, that is close in the search space.

· It's important that closeness is relevant to the solution.

· The shape of the state space is also important for the choice of chaining methods in RBSs

· Forward and Backward Chaining

· If there is lots of fan in use Forward Chaining

· Fan in means that lots of initial states lead to one (or a small number of) conclusion

· If you use forward chaining, rule applications will quickly converge to an answer, but backward chaining will consider a lot of unnecessary subgoals

· If there is lots of fan out use Backward Chaining

· Fan out means that there are lots of conclusions.

· Only use the rules that are appropriate to the goal.

· If it is really big, use interleaved chaining intelligently.

· Reduce the number of rules applied by negotiating the search space in a wise way.

· Also ESs are good for problems with medium size search spaces

Conclusion

Some ways to organise the learning outcomes are Symbolic Programming vs. symbolic KR Search Spaces

Lecture 12

Conclusion and Review

· Last Week

· Learning Outcomes

· Rule Based Systems

· Software Engineering and ESs

· Expertise

· Knowledge Representation

· Semantic Nets

· Logic and Frames

· Case Based Reasoning

· Conclusion

Last Week

· Last Week we reviewed semantic nets and logic. These are both major components of the exam.

· We also talked about unifying themes: symbolic programming, symbolic knowledge representation and search spaces.

· These are not on the exam, but enable you to relate the major components.

· Are there any questions?

Learning Outcomes

From week one

· Expert Systems

· How Rule Based Systems work

· Case Based Reasoning

· Rule Based Shells

· Developing ESs

· Expertise

· Knowledge Engineering

· Symbolic Knowledge Representation

· Logic

· Semantic Nets

· Frames

Expert Systems

· The basic components of Rule Based Systems are working memory and rules.

· Less important components are the User Interface, question answering, and developmental facilities like debugging

· Chaining and conflict resolution are important

· Exam Questions

· Explain a series of rules

· Use an appropriate representation format (e.g. decision trees, and-or-trees) to describe a certain rule set.

· Develop an ES

· What conflict resolution strategy is appropriate in a certain case.

· How do rule based systems relate to CBR systems?

· What are the problems with ESs? How can they be solved?

· How do ESs relate/influence/use Knowledge Representation formats?

Software Engineering and Expert Systems

· ESs (both Rule Based and CBR systems) need to be developed just like any other software.

· Like other systems you need to acquire the knowledge, design the system, implement it, test it, and maintain it.

· A lot of this is about using the expert appropriately also known as knowledge engineering.

· A key point here is interviewing

· Exam Questions

· How do you develop an ES?

· What properties of a problem make it appropriate for an ES?

· What are the key decisions in developing an ES?

· How do ESs relate to other types of systems?

· Note that ESs could be spoken of either collectively, or as Rule Based Systems or as CBR systems

Expertise

· Someone is an expert in a particular domain.

· Experts are great problem solvers in their domain.

· Experts have lots of knowledge about their domain.

· Some domains are inappropriate for Expert Systems (e.g. 5 minute phone conversation).

· Exam questions

· What makes someone an expert?

· Are you an expert at anything?

· How do different experts in the same domain fit in?

· Can you make an ES if you have an expert?

· How do you get expertise from an expert?

Knowledge Representation

· A good knowledge representation format is essential for any large (AI) system.

· The next two slides are on semantic nets, logic, and frames.

· and-or trees

· decision trees

· Exam questions

· Design a decision tree to choose how to cross the street.

· Make up an and-or tree with 12 nodes.

· How do decision trees relate to Rule Based Systems

· And-or trees are readily used to explain the flow of control of a rule based system using a particular type of chaining. What is that type of chaining?

· What are the fundamental problems of a particular KR mechanism?

· What are the strengths of a particular KR mechanism?

Semantic Nets

· Semantic nets are nodes/concepts that are connected.

· Arcs usually refer to a certain type of relationship

· Inheritence is a particularly important type of arc

· Exam questions

· Interpret a semantic net

· Draw a semantic net for the following problem

· Draw a semantic net

· What are the important properties of a semantic net?

· How could you implement a semantic net in a rule based system?

· How do semantic nets represent knowledge?

Frames and Logic

· Frames (and Scripts) are a mechanism for structuring data

· A good example is the verb frame.

· Exam Questions

· Show me a verb frame for I like Pat

· Show me a frame for an HTML document?

· What is the key difference between frames and semantic nets? How are they related.

· Logic has true, and false values, connectives (implication, and, or, not), and predicates(functions).

· Exam Questions

· Draw a logical formula for the following statement

· What is the truth value of the following statement

· How is logic similar to rule based systems?

· Write a function that implements And.

Case Based Reasoning

· Cases are represented by a series of features

· The answer is found by comparing a new case to a case in the case base.

· Similarity is a key to solving the problem.

· The distance measure is a good way of finding similarity, but there are others.

· Exam Questions

· Apply a distance measurement to A (given several cases)

· What is the nearest case to A (given several cases)?

· Develop a small CBR system?

· What similarity metric is good for a certain problem? Why?

· How can I update my case base?

· How are CBR systems like/unlike rule based systems?

· What are CBR systems good for?

· How can you develop a CBR system?

· How do CBR systems take advantage of experts?

Conclusion

· First class marks will be able to answer questions combining all of these things.

· Some nice points to consider are search spaces, symbolic reasoning, and the nature of knowledge. These issues can help the outcomes cohere.

· For just passing, main points

1. Rule Based Systems

2. Semantic Nets

3. CBR

4. Logic

5. Expertise

· Minor points

· Frames

· and-or trees

· decision trees

· software engineering

Lab 1

PRIVATE

PRIVATE "TYPE=PICT;ALT=Middlesex Logo"

· Get Clips running, it's usually under middlesex software, programming languages, clips

· It is a standalone application. We'll be typing things directly into it, but you can also save things to files and then load the file.

· Note that there is both in-line help (try (help); it isn't very helpful) and a big manual in postscript.

· First we'll implement my rule, then you should implement your own.

· First, lets say that Chris is 39 years old.

· You do this by asserting a fact.

· CLIPS> (assert (age-is Chris 39))

· You can look at this (and all the other facts) by typing (facts)

· Now lets make a rule that says if a person is 39 then he is middle aged.

· You do this by using defrule, and its format is
(defule name if-part => then-part)

· The arrow is made by an equal sign followed by a greater than sign

· CLIPS>(defrule make-middle (age-is ?X 39) => (assert (age-category ?X middle-aged)))

· (That ?X thing is a variable in a rule; we'll talk about it more later.)

· Now (run). This tells the system to run any rules it can.

· and look at facts to see that there are two including

· You can (reset) to get rid of all the facts.

· Now make a rule of your own, and make sure it isn't about age.

· Do you have any questions about case-sensitivity, predicate numbers or anything else?

· Save the file in something like lab1.clp. This saves all the rules but not the asserts

· clear to get rid of the rules and the asserts

· load the rules again, and test

· use the initial-fact to make a rule that puts the asserts in; save, clear, load and test again

· Why does my lab1.clp have two versions of the rule? How do they differ? Which one is used?

· When you're done, you can (exit) to leave Clips.

Lab2

Chains and Using Clips

· Load up clips again

· You might want to check your lab1 file by loading it in, but you may want to clear the rule after.

· We want two rules to fire. Make two rules, one that is of the form if A then B, and another if B then C. Assert A and run.

· That's a chain of reasoning. If you know A, then you derive B, then C. An example of this would be I know A Fred is an Ape, I know the rules that Apes are Primate(B), and Primates are Mammals(C), so I know Fred is a Primate and a Mammal.

· Now add another rule if A then D; (Apes have thumbs(D)).

· Reset and assert the fact A.

· Now two rules should be applicable: A->B and A->D.

· Which one is going to applied? If you run both will be applied, but which is applied first.

· The agenda command shows you which rule runs first

· You can step (Ctrl-T) on the menu to make the rules go one at a time

· For me AB was first. I also used the watch menu item and selected rules and facts. When I used run I got to see the order of application

· So far all that is happening is the facts are being asserted. You can also print things to the screen.

· add a rule df that has as it's right hand side (RHS):
(printout t "hey" crlf) (crlf is carriage return line feed)

· run it and hey and a new line will be printed

· If you run it again why don't you get hey?

· Add a new rule DF that prints out heyF and a line feed, and assert the fact F

· If you reset and run, what will happen?

· After the reset, if you assert A and run, what will happen? What will be the new facts?

· Now add a new rule AD-G that has too clauses on the left hand side if A and D then G. (You don't have to use any sign)

· If you reset, assert A and run what rules will run? What will the output be? What order will the rules run in? What will the facts be?

· Now add a rule AD-H that says A or D then H. Here you have to use the or operator and pass it D and H on the LHS.

· When I run it H gets added twice (step through or use printout). Does it for you?

· Now add a rule notAD-I: if not(A or D) then I

· When you reset and run is there anything odd?

· Now reset and make your own system. This should have a chain of reasoning that is at least 4 rules long. It should derive some fact that seems contradictory.

· Try a rule that will run once for each of 3 different assertions

Lab3

Looping with Rules

· Make one rule that loops from 1 to 5

· When I did this, I used an LHS like:
(value ?a) (test (< ?a 5))

· Here test says call the fucntion (in this case <); note that the variable ?a is bound across LHS and RHS.

· I also did it via an LHS like:
(value ?a&(< ?a 5))

· What's new here is the &. It binds the variable ?a and allows the < function. I expect there is some other way to do it, but that's what I came up with.

· What my system does is if there is assert (value 1), it will add in 4 assertion (value 2)...(value 5)

· Here the same rule is being applied multiple times because there are new (value ?a) assertions being added.

· Finally, if you haven't managed it yet, you can use a functions like + in the RHS, or even from the shell. From the clips prompt try (+ 3 5), or (* 3 5 7).

· Now try a loop from 10 to 20.

· You can also get ahold of facts and manipulate them.

· For example:
(defrule bindfact
?f1 <- (value 4)
=>
(printout t (fact-index ?f1) crlf))

· <- binds the fact itself to a variable. It is the address of operator for those of you in the know.

· If you retract ?f1 the fact goes away.

· Make a new loop that loops from 1 to 10, but only leaves one fact (use retract).

· You can also make functions with rules.

· Make a function that loops from 1 to a variable that the user sets.

· I've done this by having a special variable infunction, and three rules, one for init, one for the body and one for the end.

· They all check that the variable has the value working, and the last changes the value to done.

· If you've got this far and did it on your own well done. If you didn't do it on your own, make sure you can do it on your own. It's also wise to save your work.

Lab 4

Lab 4: Monkeys and Bananas

· In the Spring 2003 exam, I gave a question about monkeys and bananas.

INCLUDEPICTURE \d \z "monkeys.gif"[image: image2.png]Today you're going to make the monkey go from the start to get and eat the bananas

· First using assertions make a door from the start to room 1.

· Give the monkey a fact that states his position.

· Make a rule which moves him.

· (If you did this right, you might find the monkey moving from start to room1 and back repeatedly. Stop this by using the Execuction+Halt menu item.)

· Add the extra rooms and doors in, and make the monkey move to room 4.

· Now add in the bananas and the crate.

· Have the monkey move to the crate, then move it. (I found it necessary to use (test (neq ?new ?old)) in the LHS of this rule. neq means that ?new is not equal to ?old.

· Now write rules to make him climb on the crate, grab the bananas, and eat them. (3 rules should do)

· Now run from scratch.

· Add a rule to let the monkey get off the barrel.

· Can you add more barrels, bananas and doors to make it more interesting?

Lab 5

Lab 5: Semantic Nets

Today we're going to develop a semantic net using a rule based system. As semantic nets are representationally efficient, we'll use a small number of rules and facts to generate a large number of facts. The domain will be mammals, but if you prefer you can translate the domain to something else.

· First make some assertions that defines a hierarchy of mammals. You can do it in a variety of ways, but I used facts that looked like (ISA canine mammal).

· Make sure that you have some grand-children nodes, like (ISA wolf canine).

· Make a rule which expands the ISA relation. In my case it added the fact (ISA wolf mammal).

· Now add some feature facts. For example (feature blood mammal warm). Only add them in the appropriate place in the hierarchy. (IE don't also say (feature blood canine warm).

· Now add a rule which exploits the ISA relations to put these facts in.

· If you haven't already done so, add an initial rule that puts your basic facts in the system, reset and see what you get. You should also save your rules into a .clp file, clear, reset, load the file, and run and see what you get.

· Now implement overriding inheritence. For instance, by default mammals travel by walking, but bats do not. I did this by modifying my feature inheritence rule.

· Now add enough nodes so that it expands to over 100 facts. (I did it with 20 facts, but I'm sure I could have used less.)

· Can you implement any other interesting rules like one that only prints out the facts for one type animal, or prints out all the subclasses of an animal?

Lab 6

PRIVATE "TYPE=PICT;ALT=Middlesex Logo"

Conflict Resolution

· Take last week's semantic nets labs and copy it to a new file.

· Remove the facts in the semantic net file so that you have the smallest number of facts that you need to override inheritence.

· If you load and run the system, it should still give you the correct results, however if the rules were applied in a different order, they would not override the inheritence.

· In what order are the rules applied? You can use the step menu item, Ctl-T, or (run 1) to step through.

· You will note that many rules are applicable at most stages. (Use (agenda) to see which rules). The strategy that is used can be modified.

· You can see which strategy is being used by (get-strategy), and change the strategy by (set-strategy new-strat)

· I've found that the default strategy is depth. How does the order of rule application change if you use breadth? Does the result change?

· Unfortunately, I've not found a simple mechanism that Clips gives us for backward chaining.

· That's too bad, because we don't always want to store all the information about a particular object, but would like to derive it at runtime.

· For instance, my net has the feature of how the animal travels. I can derive all the facts (cache them as it were), or I can keep the basic net structure and derive the fact when I need it.

· Deriving as few new facts as possible write some rules that enable you tell if x ISA y. I use an assertion (IS? bat mammal) to drive this.

· I took advantage of the salience property of a rule which allows you to rank which rules apply first. (defrule A (declare (salience 5)) LHS => RHS). In essence this overrides the conflict resolution strategy.

· Make sure that you also can say if x ISnotA y.

· Deriving as few new facts as possible write some rules that enable you tell if what value x has for feature y. I use an assertion (feature? bat blood) to drive this.

· Now load in the full semantic net from lab 5, and see how the system performs on a range of questions.

Lab 7 - Using Caspian

The purpose of this workshop is to

· Use a CBR system.

· Understand some principles components of CBR systems, namely cases, features, and matching.

· Modify an existing CBR system, by firstly adding cases, then modifying the feature structure, then modifying the retrieval mechanism.

Part 1, using the existing Caspian case base

First you need to run Caspian. I do this by opening a DOS window, move to the Caspian directory (using cd), and the invoking Caspian with the case file. We're working with the chef2 file provided so I use,

CASPIAN CHEF2
This brings up the Caspian GUI, which prompts you with 4 options; choose the first option Search for Matching Case. Then choose Stir-Fry, then choose Hot, then choose no ingredients by typing []; then choose use weights, and you should receive the recipe for stir fried tofu.

You have now retrieved one case. Now a brief explanation of the Chef2 file that describes the case base. As we're going to modify Chef2 eventually, copy it to chef3 and put it in your own directory. You should be able to run Caspian by specifying the full path of the file that you're using so

Caspian c:/temp/chef3

Alternatively, you can move to the directory where your new file is and specify the full path for Caspian

C:/classes/bis2040/caspian/caspian chef3
Now, open up the chef3 file using wordpad. It's just a text file, and that's all you have to modify. Have a look through it, noting that lines starting with ~ are comments. In particular, look for a few blocks at the end starting with case instance. (You can search for these.) These are the cases that you retrieve. How many are there? Try running the system again and try to retrieve all of the cases? Turn on expansion so you can get the full effect.

Part 2, modifying the Caspian case base

The Mange_tout case looks like the easiest, so let's try modifying it. Let's make it print out both the ingredients and the vegetable. How would that be done? Change the recipe line to

recipe = [cook_method 'the' ingredients 'and' vegetable];
Now run the system so and see that you get both the ingredients you add (possibly nothing) and green_beans.

Another way to modify the case base is to add a new case. Try adding a new case. I've added a case called taters by simply copying the mange_tout case, changing the method to boil, the vegetable and ingredients to potatoes, and the name of the case to taters.

Now, let's think about how things are retrieved. We've got three things that are stir-fried (chicken, tofu, and green_beans), and one thing that is boiled (potatoes). If you type in stir_fry and hot, you get the relevant case (tofu), but you get the first case if you type sweet. If you type in bake, you don't get anything. So how does the system match cases? Clearly it matches first on cook_method, and if that doesn't match, it gives up. If it does match it then goes on taste, but if that doesn't match it guesses. It doesn't seem to use the ingredients in matching.

Look at the beginning of the chef3 file for index. It is currently indexed by cook_method. Change this to taste. Now which do you get first? Try boiled, hot.

Try adding a new field. (I added cost.) You need to add it both to the definition at the top and the cases at the bottom.

Conclusion

You've seen the basics of this CBR system. There are still several things that we have not looked at such as repair mechanisms, but we have explored the basics. Caspian is a very simple system, but it is able to make sophisticated CBR systems. What are its shortcomings? What would be a good case-based system that you could implement?

Lab 8- Using Caspian to develop a novel CBR system

The purpose of this workshop is to

· Develop a CBR system from scratch using Caspian.

· Allow you to define your own measurement criterion.

As we're using Caspian, you are going to have to find a Caspian (CASL) file. You can start with Chef2 and get rid of all but the core, or you can look at: http://www.cwa.mdx.ac.uk/bis2040/labs/cars
This file has one field (age) that the case base uses to index. It has three cases, one for each of the age values. Unfortunately, Caspian needs to agree on the Index field, so you can try this and should be able to retrieve each of the cases.

Add another field, number_in_family. Add it in the case definition as:

field number_in_family type is number;

This is not an enumerated type, but is of course a number: type is X is used to specify the type of the field. Also add a number_in_family to each of the cases.

If you run the system again, you'll still get the three cases no matter what you put in.

Add a new case for middle_aged people with 3 people in the family. Give them a Volvo, and make sure Bob_Porsche has just 1.

Now if you search for middle-aged, and have 3 people you get the Volvo, and any other number of people you get the Porsche. The reason is that Caspian by default only uses exact matches. To fix this you need to add:

field number_in_family similar range 3 to 6;

Now if you want to try with 5 people, you get a Volvo. You can also add a range for small families, say 1 to 2.

Now add an income field and an income to all of the cases. (You can omit it for the yugo and cadillac, because we don't really care below.) Give the Volvo 30000, and the Porsche 40000.

Exact matches always win, but a person with 5 family members making 39999 still gets a Volvo. We can make some similarity bins to fix this. Say ranges from 20-35000 and from 35000 to 80000. This fixes the above problem, but not the reverse (when someone makes 29999, because a person matches 1 of each criterion. How do you decide which is more important. Let's say money is more important. This can be fixed by modifying the field entry to:

field income type is number weight is 2;
This makes this more important, though age is still necessary to match.

Now, add another case where an old, rich person gets a yugo. How does this effect the system? Can you add other features? You can also do some case manipulation once you've retrieved the answer.

Examples of Typical/Previous Examination Paper

Other exams can be found on www.cwa.mdx.ac.uk/bis2040/

School of Computing Science

May 2002

Bounds Green Campus

2001/2002 Semester 2

Examination Paper Solutions

Solutions for Module Number: BIS 2040

Module Title: Knowledge Based Systems

Module Tutor’s Name: Christian Huyck

Examiner:

Time allowed: 2 hours

Total number of questions: 5 questions, students answer 3

Example Solution Format

ATTEMPT ANY THREE QUESTIONS

Each question carries 33 marks

Question 1

a) Describe the knowledge representation mechanism of and-or trees (also known as and-or graphs). Give an example with at least six nodes.

[15 marks]

Nodes are connected to other nodes 3 marks

Connections are either and or or (explain what these are) 3 marks

It is a tree structure (not a graph) 3 Marks

Example 6 marks

Sample Answer

And or trees are used to describe a range of knowledge including sub-goaling in expert systems. As they are trees, they are composed of nodes and arcs. Arcs connect nodes, and there are two types of arcs: "and" arcs and "or" arcs. For a node to be true it's children must be true, and this is dependent on the type of arc. If a node has children that are connected to it via or-arcs, if any of those children are true, the root node will be true. Similarly, if its children are connected to it via and-arcs, all of the children must be true for the root node to be true. Typically, each node in a tree has children that are connected via only and arcs or only or arcs, though this is not necessary.

In the example, to eat you can either make chinese food, go to a restaurant or order takeout.

To Make Chinese food, you have to buy it and cook it. Note that the and arcs are differentiated from the or arcs by connecting them with an arc.

b) And-or trees are a good intermediate representation for certain types of Expert Systems. What types of Expert Systems can be usefully represented by and-or trees? Give an example of rules derived from an and-or tree. You may either use the above and-or tree or make a new one.

Goal directed ESs 5 Marks

Backward chaining 3 Marks

Accurate translation 5 Marks

Useful example (are subgoals reasonable) 5 Marks

[18 marks]

Answer:

And-or trees are a good intermediate representation for goal directed Expert Systems. Typically, a node is a goal, with its children as subgoals. To achieve the goal you have to achieve one of the subgoals (or arcs) or all the subgoals (and arcs). This is particularly useful with a backward chaining system. The system chains to the goals, and uses the subgoal structure to decide on how best to proceed.

The above system could be represented by

If (order-takeout or goto-restaurant or make-chinese) then eat-chinese food.

If (buy-food and cook-food) then make-chinese.

Question 2

a) Describe the knowledge representation mechanism of semantic nets.

Nodes of concepts 3 Marks

Connect by arcs 2 Marks

Arcs are normally labelled by a small number of primitives 2 Marks

Semantic distance or spreading activation 1 Mark

[10 marks]

Answer:

Semantic nets represent knowledge as a graph. Basic concepts are represented by nodes. These nodes are connected by arcs that are typically labelled. The label describes the relationship between the nodes/concepts. There are typically a limited number of types of arcs. Concepts are considered to be closely related if there are few connections between them. The distance between concept is known as semantic distance. Similarly activation can spread via all arcs from one node to another.

b) Inheritance is a mechanism commonly associated with semantic nets. Draw a semantic net for animals including at least 5 IS-A (inheritance) relations and 5 other relations.

IS-A 5 Marks

Other Relationships 5 Marks

Correct and Useful (I assume people know about animals, I think this is reasonable are there any cultural problems.) 3 Marks

[13 marks]

Answer:

c) A common problem with semantic nets is known as the Nixon Diamond. A concept can inherit from two different concepts each with mutually exclusive features. (For example in the Nixon case one parent shows that the person is pro-war, and the other parent shows it is anti-war.) Draw an example semantic net that has this problem. Draw an example of this problem. How might the problem be resolved?

Drawing a reasonable example (Nixon is legal but need reasonable labels) 5 Marks

Allowing one to be picked randomly, neither value is inherited 2 Marks or

 The 5 below

Rigid formula 2 marks or

Problem flagged to designer, both values inherited, probability 5 Marks

[10 marks]

Answer:

Nixon is both a republican and a quaker. Quakers are pacifists, but republicans typically are hawkish. So Nixon inherits contradictory beliefs. There are many ways to resolve this including choosing one property at random, or stating that neither is likely. The best is probably to flag the problem to the designer of the knowledge base, and let them resolve the problem.

Question 3

a) The following is a fictitious case scenario:
John is a football player with minor swelling on the right of the knee; he weighs 100 KG; he felt a tearing on the right of his knee when he injured it; he has a torn ACL.

Paul is a runner; he weighs 70 KG; he has persistent pain below his patella; he has Osgood Slaughter.

Sue is a field hockey player with major swelling all around the knee; she weighs 70 KG; she was struck on the knee with a hockey ball; she has a broken patella.

Jane has major swelling all around the knee; she weighs 65 KG; she has no pain; she has bursitus.

How would you represent the cases?

A series of features per case 4 Marks

Major features are swelling, pain, how it was injured and injury 3 Marks

Injury is special 2 Marks

Minor points are gender, weight, sport and name 1 Mark

Enumerating the possible feature values 3 Marks

[13 marks]

Each feature is represented by a series of features. The features include name, sport, injury, weight, when damaged, location, and gender. Injury is a special feature because that is what will be diagnosed. That is given a new case described by the other features, the system should come up with the injury.

The possible values of name are open, weight is probably a range between say 50kg and 200kg, sports could be enumerated as running, football, hockey, and perhaps other. Gender is of course male and female. Sympton values are major swelling, minor swelling felt a tearing and perhaps other. Injury vlues are bursitus, osgood slaughter and broken patella.

b) How is this representation similar to a frame based representation? What are the differences between cases and frames?

Marking notes: My point is that they are really the same. Frames traditionally have hierarchy where cases don't but there is no reason they couldn't.

Description of Frames (or inferred description) 3 Marks

They are the same (or a good reason why they are different) 5 Marks

Hierarchy 2 Marks

[10 marks]

Answer: Both a series of features and a frame representation use a set number of features. So this answer is very close to a frame system. However frames typically use inheritance; hierarchy is the major difference.

c) How is a new case compared to the case base?

Distance Measurement (dimensionality and cosine for full marks) 5 Marks

Comparing number of features that are the same 2 Marks

Weighting features 2 Marks

Putting feature values in the same space (binary vs. real) 1 Marks

[10 marks]

Answer:

A simple way of comparing cases is to use a distance measurement. Each feature is compared. If all features are in a continuous format this is straight forward, however in this case a measurement for each scalar value will be needed. E.g. football=1, hockey=2, running=3. Some features may be more important so their weights should be increased in the measurement. For example symptom is probably more important than gender for this case.

An alternative is to simply compare the number of features that are the same.

Question 4

a) What are the key stages in knowledge based systems development?

Marking notes: This is not a traditional question for this module. I'm not asking for a predefined set of stages. I am looking for knowledge discovery with feasibility in mind, knowledge discovery for the system, implementation, testing and some form of repetition.

Knowledge acquisition for the system 3 Marks

Implementation 2 Marks

Feasibility 3 Marks

System type selection 2 Marks

Testing 2 Marks

Repeat the process 1 Mark

[13 marks]

Answer:

Knowledge based systems are software systems so they share several stages of development. All software should have an initial problem exploration phase, a design phase, and implementation phase, a testing phase and maintenance phase. This typically is cyclical with returns to early stages. Knowledge based systems also are specialised because they need more knowledge. It is therefore particularly useful to check for feasibility. Will it be possible to do solve the problem? This is a good time to check which type of system is best to solve the problem. Knowledge based systems also need to acquire knowledge. This knowledge acquisition stage typically does not occur in other types of software systems.

b) Here is some text from the web (www.greenchronicle.com/gardening/rosemary.htm):
How to grow: Rosemary seeds are very slow to germinate so they are best started off in a pot. Transplant them to a permanent position when the plants are well grown. Alternatively, beg a few cuttings from someone who has a Rosemary bush. This is best done in late summer. Ask for 6 inch side shoots and put them in a pot of sandy soil to get them rooting.
Soil condition/position: Rosemary loves hot sun and poor, slightly limed soil which is well drained.
Appearance: A Rosemary bush can grow up to 4 or 5 feet tall. The narrow leaves are a blue/grey colour and the plant has dusty blue flowers
Assuming you are going to create an Expert System based on the knowledge in this text, what is the structure of working memory? What are the rules?

Marking note: the appearance bit is just a distractor. It does not need to be included.

Working Memory, seeds vs. cuttings, time, (extra slots for transplanting from seeds), soil type, drainage, lime. 5 Marks

Rules simple, right format, reasonable rules 3 Marks

Rules, complex, different strands for from seeds and from shoots. 2 Marks

[10 marks]

Answer:

Working memory should refer to the plant, the soil and the time. In particular, the plant should have slots for seeds and cuttings, the soil should have slots for soil type, drainage and lime content.

Rules If (plant:seeds = True) then (plant:location = pot) and (plant:seeds) = false

If (plant:location = Pot) and (plant:size = 10 inches) then (plant:location = permanent) and

 (tell-gardener=transplant-to-hot-sun)

If (plant:cutting = True) then (plant:location = pot) and (soil:type = sandy)

If (plant:location = permanent) and (soil:condition = no lime) then

(soil:condition = slightlylimed) and (tell-gardener = add-lime)

If (plant:location=permanent) and (soil:condition = wet) then (soil-condition = well-drained)

And (tell-gardener = drain-soil)

c) Is an Expert System appropriate for this problem? Why or why not?

Based on properties of the domain 3 Marks

To at least some extent yes, (you just wrote one), and to some extent no (the knowledge given is incomplete and it may not be able to be complete) 2 Marks

Flexibility is required here as the students may come up with a wide range of answers

 5 Marks

 [10 marks]

Answer:

This domain has a small number of discrete values, and questions in it could be answered by an expert on the phone in 5-30 minutes. So it is probably appropriate to an expert system. On the other hand the expert may need to actually look for certain things (e.g. limeness of the soil), and this particular example is really simple, so it may not be perfect for an expert system. Certainly a gardening ES would be nice to give advice on certain simple problems.

Question 5

a) Here is a simple sentence:

The barber shaves everyone in Seville who does not shave them self.

(So, Chris shaves himself. Dave doesn't shave himself so the barber shaves him.)

Write an expert system that is given a person and decides who shaves them. (You may enumerate the people in Seville.)

Describe working memory (shavees and shavers) 3 marks

Rule for barber shaving 2 marks

Rule for self shaving 2 marks

Exclusive Or 3 marks

[10 marks]

Answer:

Working memory should reflect that people, whether they shave, and who shaves them.

If (person:name=dave or person:name=tim or person:name=bob) then person:shaves = true

and person:shaver=person:name

If (person:name=bart or person:name=fred or person:name=angelo) then person shaves=true

And person:shaver=the-barber

The tricky bit might be

If (person:name=the-barber) then person shaves=false

b) Write logical formulae using existential and universal quantifiers that describe this sentence.

For all(X: (shaves(X,X) ex-or shaves(barber,X)) Sample Answer

Shaves predicate 3 Marks

Shaves predicate with 2 arguments 2 Marks

Universal or existential quantifier 2 Marks

Exclusive Or 3 Marks

Correct 3 Marks

[13 marks]

c) There is a potential paradox (or inconsistency) here, who shaves the barber? Is this really a paradox? If so, explain how the paradox could be resolved. If not, explain why it is not a paradox.

Markers note: these marks are or'ed , that's why they don't add up.

The barber could just not shave (it's a woman) 10 Marks

If it remains a paradox, can be resolved by adding a clause 5 Marks

Other points for a good answer I can't think of

[10 marks]

answer:

Sure it's a paradox. If the barber shaves himself then he doesn't shave himself, but if he doesn't shave himself, then he does. The simple way to break this is to say that the barber doesn't shave, perhaps he's a woman, or has a beard. Another way to resolve it is to say the barber is not from Seville, or there is more than one barber. Just because it is a paradox, doesn't mean the initial ES is wrong.

Exam/Coursework Report on last paper and possibly Marking Scheme

Useful Information

This School has a student website http://www.cs.mdx.ac.uk/student-extranet dedicated to enrolled Computing Science students, which provides information to support you on your programme of study. Including information on the School’s Academic staff and:

· Module Handbooks

· Subject Handbook

· Course Material

· Exam/ Coursework Reports

· Duty Academic Rotas

· Time-tables

· Revision Time-table Information

· Student Allocation System (SAS)

· Boards of Study Minutes

And other useful information such as

· Link to biCSS
· 24-7: Your information Heaven at Middlesex University
· Library Catalogue
Feedback to Students on their work/progress

Students can obtain feedback on their work/progress via (Module Leaders - please select as appropriate)

· Seminar Tutor

· Module Leader

· Exam Reports which can be obtained from http://www.cs.mdx.ac.uk/student-extranet
· Written comments on the actual coursework

Attendance Requirement

The default minimum student attendance requirement is 50% for all Computing Science modules.

School Policy on passing all Components of Module

Students must pass both assessed components of a module individually, coursework and examination, in order to pass the module overall. Failure in one of the components will result in failure of the module.

Academic Dishonesty

Taking unfair advantage in assessment is considered a serious offence by the university which will take action against any student who contravenes the regulation through negligence, foolishness or deliberate intent.

Academic dishonesty is a corrosive force in the academic life of the university; it jeopardises the quality of education and devalues the degrees and awards of the University.
The full regulations on academic dishonesty are given in the University Guide and Regulations, Section F Infringement of assessment regulations - Academic dishonesty.

Plagiarism

The presentation by a student as his or her own work of a body of material (written, visual or oral) which is wholly or partly the work of another.

Make sure written material is acknowledged through the use of quotation marks, references and bibliographies. Information on the correct way of acknowledging work from other sources is available from campus libraries.

Appeals

The full regulations on appeals are given in the University Guide and Regulations. Section G - Appeal regulations and procedures

Examples of all Typical/Previous Examination Papers

Please go to the University 24-7 website – http://www.mdx.ac.uk/24-7 – Academic – Exam Paper Database http://www.mdx.ac.uk/cgibin/mdx/exam/searchscreenexam.asp –for copies of previous examination papers in all subject areas across the University

24-7

24-7 is the new website for every Middlesex student. Turn to it for advice and up-to-date information any time of the day or night.

Explore 24-7 on: www.mdx.ac.uk/24-7

�

PAGE
4

